Regulations Compliance Report

Approved Document L1A 2010 edition assessed by Stroma FSAP 2009 program, Version: 1.5.0.85 Printed on 17 April 2015 at 14:43:42

Printed on 17 Apr	il 2015 at 14:43:42			
Project Informati	on:			
Assessed By:	Aymon Winter (ST	RO014511)	Building Type:	Flat
Dwelling Details	:			
NEW DWELLING	DESIGN STAGE			
Site Reference :	Lancaster Street		Plot Reference:	07-14-40586 A07 PL1
Address :	Flat A07			
Client Details:				
Name:	H G Construction	Ltd - Hitchin		
Address :	4 Hunting Gate, H	itchin, SG40TJ		
-	rs items included w ete report of regulat	ithin the SAP calculation ions compliance.	ns.	
1 TER and DER				
	ting system: Mains g			
	mains gas (c), mains	•	15 07 kg/m²	
-	oxide Emission Rate Dioxide Emission Rat		15.37 kg/m² 10.24 kg/m²	ОК
2 Fabric U-valu			10.2-4 kg/m	OR
Element		Average	Highest	
External		0.16 (max. 0.30)	0.16 (max. 0.70)	OK
Party wa	II	0.00 (max. 0.20)	-	OK
Floor		0.13 (max. 0.25)	0.13 (max. 0.70)	OK
Roof	_	(no roof)	1.00 (mar. 2.00)	OK
Opening		1.60 (max. 2.00)	1.60 (max. 3.30)	OK
3 Air permeabil	bility at 50 pascals		6.00	
Maximum	ibility at 50 pascals		10.0	ОК
4 Heating efficient	anev			
	ng system:	Community heating sch	nemes - mains gas	
	5 ,	, ,	Ŭ	
Secondary	heating system:	None		
5 Cylinder insu				
Hot water	Storage:	No cylinder		
6 Controls				
•	ting controls		to use of community heating, p	orogrammer and TRVs OK
Hot water of 7 Low energy li		No cylinder		
Percentage	e of fixed lights with lo	ow-energy fittings	100.0%	
Minimum			75.0%	ОК
8 Mechanical v	entilation			
Not opplige	hla			

Not applicable

9 Summertime temperature

Overheating risk (Thames valley):

Based on:

Overshading: Windows facing: South West Windows facing: South West Windows facing: North East Ventilation rate: Blinds/curtains:

Medium

ΟΚ

Average or unknown

10.42m², Overhang twice as wide as window, ratio NaN 2.25m², Overhang twice as wide as window, ratio NaN 9.6m², Overhang twice as wide as window, ratio NaN 4.00

Light-coloured curtain or roller blind shutter closed 100% of daylight hours

10 Key features

External Walls U-value External Walls U-value Floors U-value Community heating, heat from boilers – mains gas Photovaltaic array 0.16 W/m²K 0.13 W/m²K 0.13 W/m²K

SAP Input

Property Details: 07-14-40586 A07 PL1

Address: Located in:	Flat A07 England
Region:	Thames valley
UPRN:	
Date of assessment:	16 April 2015
Date of certificate:	17 April 2015
Assessment type:	New dwelling design stage
Transaction type:	New dwelling
Tenure type:	Unknown
Related party disclosure:	No related party
Thermal Mass Parameter:	Indicative Value Low
Dwelling designed to use less than	125 litres per Person per day: True

Property description	1:					
Dwelling type:		Flat				
Detachment: Year Completed:		2015				
Floor Location:		Floor area:	St	orey height	:	
Floor 0		88.87 m ²		2.55 m		
Living area: Front of dwelling fa	aces:	35.69 m ² (fraction 0.402) North West				
Opening types:						
Name: Front Door	Source: Manufacturer	Type: Solid	Glazing:		Argon:	Frame: PVC-U
Side Elev	Manufacturer	Windows	low-E, $En = 0$.05, soft coat	Yes	Metal
Side Elev	Manufacturer	Windows	low-E, $En = 0$.05, soft coat	Yes	Metal
Side Elev	Manufacturer	Windows	low-E, $En = 0$.05, soft coat	Yes	Metal
Name:	Gap:	Frame Factor:	g-value:	U-value:	Area:	No. of Openings:
Front Door	mm	0.7	0	1.6	2.12	1
Side Elev	16mm or more	0.8	0.63	1.6	10.42	1
Side Elev	16mm or more	0.8	0.63	1.6	2.25	1
Side Elev	16mm or more	0.8	0.63	1.6	9.6	1
Name:	Type-Name:	Location:	Orient:		Width:	Height:
Front Door		Walls to Corridor	North West		0	0
Side Elev		Block External Wall	South West		0	0
Side Elev		Cladding External Wall	South West		0	0
Side Elev		Block External Wall	North East		0	0
Overshading:		Average or unknown				
Opaque Elements:		-				

Туре: С	iross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Elements							
Block External Wall	70.35	20.02	50.33	0.16	0	False	N/A
Walls to Corridor	3.9	2.12	1.78	0.14	0.43	False	N/A
Cladding External Wa	ll 6.2	2.25	3.95	0.16	0	False	N/A
Exposed Floor	2.6			0.13			N/A
Internal Elements							
Party Elements							
Party Wall	39.58						N/A
Party Ceiling	88.87						N/A
Party Floor	86.27						N/A

SAP Input

Thermal bridges:	
Thermal bridges:	No information on thermal bridging ($y=0.15$) ($y=0.15$)
Ventilation:	
Pressure test: Ventilation: Number of chimneys: Number of open flues: Number of fans: Number of sides sheltered: Pressure test: Main heating system:	Yes (As designed) Natural ventilation (extract fans) 0 0 4 2 6
Main heating system:	Community heating schemes Heat source: Community CHP heat from boilers – mains gas, heat fraction 0.6, efficiency 83.9 Heat source: Community boilers heat from boilers – mains gas, heat fraction 0.4, efficiency 92 Piping>=1991, pre-insulated, low temp, variable flow
Main heating Control:	
Main heating Control:	Charging system linked to use of community heating, programmer and TRVs Control code: 2306
Secondary heating system:	
Secondary heating system:	None
Water heating:	
Water heating:	From main heating system Water code: 901 Fuel :heat from boilers – mains gas No hot water cylinder Solar panel: False
Others:	
Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics:	standard tariff Unknown No conservatory 100% Dense urban English No <u>Photovoltaic 1</u> Installed Peak power: 0.32 Tilt of collector: 30° Overshading: None or very little Collector Orientation: South East
Assess Zero Carbon Home:	No

			USEI	Details:						
Assessor Name:	014511									
Software Name:	Stroma FS	AP 2009		Softwa	are Ver	sion:		Versio	n: 1.5.0.85	
			Propert	y Address	: 07-14-4	10586 A	07 PL1			
Address :	Flat A07									
1. Overall dwelling dimer	nsions:									
			Ar	ea(m²)	I		eight(m)	1	Volume(m ³)	_
Ground floor				88.87	(1a) x	2	.55	(2a) =	226.62	(3a)
Total floor area TFA = (1a	ı)+(1b)+(1c)+	(1d)+(1e)+	.(1n)	88.87	(4)					
Dwelling volume					(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	226.62	(5)
2. Ventilation rate:										
	main heating	Secon heatir		other		total			m ³ per hou	•
Number of chimneys	0	+ 0	+	0] = [0	x 4	40 =	0	(6a)
Number of open flues	0	+ 0	+	0] = [0	x 2	20 =	0	(6b)
Number of intermittent far	is		'			4	x 1	0 =	40	(7a)
Number of passive vents						0	x 1	0 =	0	(7b)
Number of flueless gas fir	es				Γ	0	x 4	40 =	0	(7c)
								A :		
					_			Air Ch	anges per ho	ur —
Infiltration due to chimney						40		÷ (5) =	0.18	(8)
If a pressurisation test has be			ceed to (17)), otherwise (continue fr	om (9) to ((16)			
Number of storeys in th Additional infiltration	e dweiling (n:	>)					[(0).	1]x0.1 =	0	(9) (10)
Structural infiltration: 0.2	25 for steel o	r timber frame	e or 0 35 f	or masoni	v constr	uction	[(0)	1,0.1 -	0	
if both types of wall are pre					•	dottori			0	
deducting areas of opening										_
If suspended wooden fl		,	or 0.1 (sea	lled), else	enter 0				0	(12)
If no draught lobby, ent									0	(13)
Percentage of windows	and doors dr	aught strippe	d	0.05 10.0		001		÷	0	(14)
Window infiltration				0.25 - [0.2			. (45)		0	(15)
Infiltration rate			- 4	(8) + (10)					0	(16)
Air permeability value, of If based on air permeability					•	etre of e	nvelope	area	6	(17)
Air permeability value applies						is heina u	sed		0.48	(18)
Number of sides on which				ogroo un po	meability	io boilig ac	300		2	(19)
Shelter factor				(20) = 1 -	[0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorporati	ng shelter fac	tor		(21) = (18) x (20) =				0.4	(21)
Infiltration rate modified for	or monthly wir	nd speed								_
Jan Feb	Mar Apr	May Ju	ın Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Tabl	e 7	•							
r i r	5.1 4.5	4.1 3.9	3.7	3.7	4.2	4.5	4.8	5.1		
Wind Easter (202) (22		· · · · ·							I	
Wind Factor (22a)m = (22 (22a)m= 1.35 1.27 1	.)m ÷ 4 .27 1.12	1.02 0.9	8 0.92	0.92	1.05	1.12	1.2	1.27		
(<u>EEG</u>)III-1.00 1.27 1	1 1.12	1.02 0.9	0.92	0.32	1.00	1.12	1.2	1.21		

STROMA TECHNOLOGY

SAP WorkSheet: New dwelling design stage

Adjust	ed infiltra	ation rate	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
	0.55	0.52	0.52	0.46	0.42	0.39	0.37	0.37	0.43	0.46	0.49	0.52		
	ate effectechanica		-	rate for t	he appli	cable ca	se					-	-	(23a)
				endix N. (2	3b) = (23a	a) x Fmv (e	equation (N	N5)) , other	wise (23b) = (23a)			0	(23a) (23b)
								n Table 4h)		(200)			0	(23b) (23c)
			-	-	-					2b)m + (2	23h) x [1	1 – (23c)		(200)
(24a)m=	i	0	0	0	0	0	0	0	0		0	0]	(24a)
		d mecha	anical ve	ntilation	without	heat rec	ı covery (N	и ЛV) (24b)m = (22	2b)m + (2	23b)		J	
, (24b)m=		0	0	0	0	0	0	0	0	0	0	0]	(24b)
c) If	whole h	ouse ext	tract ven	tilation of	or positiv	/e input v	ventilatio	on from c	outside			1	1	
i	if (22b)n	n < 0.5 x	: (23b), t	hen (240	c) = (23b	o); otherv	wise (24	c) = (22b	o) m + 0.	.5 × (23b)	-	_	
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,					•			on from l		0.51				
(24d)m=	<u> </u>	n = 1, the 0.63	en (24d) 0.63	m = (221	0.59 0.59	0.58	4d)m = 0.57	0.5 + [(22	2b)m² x 0.59	0.5	0.62	0.63	1	(24d)
										0.0	0.02	0.03	J	(240)
(25)m=	0.65	0.63	0.63	0.6) Or (240	0.58	0.57	d) in box	0.59	0.6	0.62	0.63	1	(25)
(20)11-	0.00	0.00	0.00	0.0	0.00	0.00	0.07	0.01	0.00	0.0	0.02	0.00		(20)
3. He	at losses	s and he	eat loss p	paramete	er:									
ELEN	IENT	Gros area	-	Openin m		Net Ar A ,r		U-valu W/m2		A X U (W/ł	<)	k-value kJ/m²∙l		A X k kJ/K
														(26)
Doors						2.12	X	1.6	=	3.392				(=0)
	ws Type	e 1				2.12	= .	1.6 /[1/(1.6)+	!	3.392 15.67				(27)
Windo	ws Type ws Type						<u>2</u> x1		0.04] =					
Windo Windo		2				10.42	2 x1	/[1/(1.6)+	0.04] = 0.04] =	15.67				(27)
Windo Windo	ws Type	2				10.42 2.25	2 x1	/[1/(1.6)+ /[1/(1.6)+	0.04] = 0.04] =	15.67 3.38				(27) (27)
Windo Windo Windo	ws Type ws Type	2	5	20.02	2	10.42 2.25 9.6	2 x1. x1. x1. x1.	/[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+	0.04] = 0.04] = 0.04] =	15.67 3.38 14.44				(27) (27) (27)
Windo Windo Windo Floor	ws Type ws Type Type1	9 2 9 3		20.02		10.42 2.25 9.6 2.6	2 x1. x1. x1. x1.	/[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 	0.04] = 0.04] = 0.04] = =	15.67 3.38 14.44 0.34				(27) (27) (27) (28)
Windo Windo Windo Floor Walls	ws Type ws Type Type1 Type2	2 2 3 70.3			2	10.42 2.25 9.6 2.6 50.33	2 x1. x1. x1. x1. x2. x1. x1. x2. x1. x1. x1. x1. x1. x1. x1. x1. x1. x1	/[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.13 0.16	0.04] = 0.04] = 0.04] = = =	15.67 3.38 14.44 0.34 8.05				(27) (27) (27) (28) (29)
Windo Windo Floor Walls ⁻ Walls ⁻	ws Type ws Type Type1 Type2	2 2 3 70.3 3.9 6.2		2.12	2	10.42 2.25 9.6 2.6 50.33 1.78	2 x1. x1. x1. x1. x2. x x x x x x x x x	/[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.13 0.16 0.13	0.04] = 0.04] = 0.04] = = = = =	15.67 3.38 14.44 0.34 8.05 0.24				(27) (27) (27) (28) (29) (29)
Windo Windo Floor Walls ⁻ Walls ⁻	ws Type ws Type Type1 Type2 Type3 area of e	2 2 3 70.3 3.9 6.2		2.12	2	10.42 2.25 9.6 2.6 50.33 1.78 3.95	2 x1. x1. x1. x1. x2. x1. x1. x2. x1. x3. x4. x4. x4. x4. x4. x4. x4. x4. x4. x4	/[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.13 0.16 0.13	0.04] = 0.04] = 0.04] = = = = =	15.67 3.38 14.44 0.34 8.05 0.24				(27) (27) (27) (28) (29) (29) (29)
Windo Windo Floor Walls ⁻ Walls ⁻ Total a	ws Type ws Type Type1 Type2 Type3 area of e wall	2 2 3 70.3 3.9 6.2		2.12	2	10.42 2.25 9.6 2.6 50.33 1.78 3.95 83.05	2 x1. x1. x1. x1. x2. x1. x1. x2. x2. x2. x2. x3. x2. x3. x4. x4. x4. x4. x4. x4. x4. x4. x4. x4	/[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.13 0.16 0.13 0.16	0.04] = 0.04] = 0.04] = = = = = = = = = =	15.67 3.38 14.44 0.34 8.05 0.24 0.63				(27) (27) (27) (28) (29) (29) (29) (29) (31)
Windo Windo Floor Walls ⁻ Walls ⁻ Walls ⁻ Total a Party w	ws Type ws Type Type1 Type2 Type3 area of e wall	2 2 3 70.3 3.9 6.2		2.12	2	10.42 2.25 9.6 2.6 50.33 1.78 3.95 83.05 39.58	2 x1. x1. x1. x1. x2. x2. x3. x4. x4. x4. x5. x4. x4. x4. x4. x4. x4. x4. x4. x4. x4	/[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ 0.13 0.16 0.13 0.16	0.04] = 0.04] = 0.04] = = = = = = = = = =	15.67 3.38 14.44 0.34 8.05 0.24 0.63				(27) (27) (27) (28) (29) (29) (29) (29) (31) (32)
Windo Windo Floor Walls ⁻ Walls ⁻ Walls ⁻ Total a Party w Party f Party c	ws Type ws Type Type1 Type2 Type3 area of e wall floor ceiling	2 3 70.3 3.9 6.2 Ilements	, m²	2.12 2.25	ndow U-va	10.42 2.25 9.6 2.6 50.33 1.78 3.95 83.05 39.58 86.27 88.87 alue calculu	2 x1. x1. x1. x1. x x x x x x x x x x x x x x x x x x x	/[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ //[1/(1.6)+	0.04] = 0.04] = 0.04] = = = = = = =	15.67 3.38 14.44 0.34 8.05 0.24 0.63	[] [[[] [[[] [[] [[[] [[] [[] [] [[] [] [paragraph		(27) (27) (27) (28) (29) (29) (29) (29) (31) (32) (32a)
Windo Windo Floor Walls ⁻ Walls ⁻ Walls ⁻ Total a Party v Party f Party c * for win	ws Type ws Type Type1 Type2 Type3 area of e wall floor ceiling adows and	2 3 70.3 3.9 6.2 Ilements	, m ²	2.12 2.25	ndow U-va	10.42 2.25 9.6 2.6 50.33 1.78 3.95 83.05 39.58 86.27 88.87 alue calculu	2 x1. x1. x1. x x x x x x x x x x x x x x x x x x x	/[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6)+ //[1/(1.6)+	0.04] = 0.04] = 0.04] = = = = = (1/U-valu	15.67 3.38 14.44 0.34 8.05 0.24 0.63	[] [[[] [[] [[] [[] [[] [] [paragraph		(27) (27) (28) (29) (29) (29) (31) (32) (32a) (32b)

Thermal mass parameter (TMP = $Cm \div TFA$) in kJ/m²K

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.

Thermal bridges : S (L x Y) calculated using Appendix K

if details of thermal bridging are not known $(36) = 0.15 \times (31)$

100

Indicative Value: Low

(35)

Total fabric heat loss (33) + (36) =											58.6	(37)		
Ventila	ition hea	at loss ca	alculated	monthl	y				(38)m	= 0.33 × ((25)m x (5)			
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	48.57	47.36	47.36	45.16	43.84	43.22	42.64	42.64	44.16	45.16	46.23	47.36		(38)
Heat tr	ansfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	107.17	105.96	105.96	103.75	102.43	101.82	101.24	101.24	102.75	103.75	104.82	105.96		
Heat la	oss nara	meter (l	HLP), W/	m²k				-		Average = = (39)m ÷	Sum(39)1.	12 /12=	103.9	(39)
(40)m=	1.21	1.19	1.19	1.17	1.15	1.15	1.14	1.14	1.16	1.17	1.18	1.19		
Niuraha			l		<u> </u>	<u> </u>	<u> </u>	1	,	Average =	Sum(40)1	12 /12=	1.17	(40)
NUMDE	Jan	Feb	nth (Tab Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31 Aug	30	31	30	31		(41)
()=	01									01				(,
4. Wa	ater heat	ting ene	rgy requi	irement:								kWh/ye	ear:	
A			NI										I	(10)
if TF				[1 - exp	(-0.0003	849 x (TF	-13.9)2)] + 0.0	0013 x (⁻	FFA -13.		61		(42)
			ater usag	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36		96	5.19		(43)
		-				-	-	to achieve	a water us	se target o	f			
notmore			person per	i .			·			0.1			l	
Hot wate	Jan er usage i	Feb	Mar day for ea	Apr ach month	May Vd.m = fa	Jun	Jul Table 1c x	Aug (43)	Sep	Oct	Nov	Dec		
(44)m=	105.8	101.96	98.11	94.26	90.41	86.57	86.57	90.41	94.26	98.11	101.96	105.8		
(++)11-	100.0	101.00	50.11	34.20	50.41	00.07	00.07	50.41			m(44) ₁₁₂ =		1154.23	(44)
Energy o	content of	hot water	used - cal	culated m	onthly $= 4$.	190 x Vd,r	n x nm x D	0Tm / 3600			ables 1b, 1			
(45)m=	157.28	137.56	141.95	123.75	118.74	102.47	94.95	108.96	110.26	128.5	140.26	152.32		
lf instan	taneous w	vater heati	ng at point	of use (no	o hot water	^r storage),	enter 0 in	boxes (46		Fotal = Su	m(45) ₁₁₂ =	=	1517	(45)
(46)m=	23.59	20.63	21.29	18.56	17.81	15.37	14.24	16.34	16.54	19.27	21.04	22.85		(46)
· · ·	storage	loss:	I											
a) If m	anufactu	urer's de	clared lo	oss facto	r is knov	vn (kWh	/day):					0		(47)
Tempe	erature f	actor fro	m Table	2b								0		(48)
			storage ared cylir			o not kny		(47) x (48)) =			0		(49)
) includir					•			1	10		(50)
•			, I no tank in			-						-		
Other	rwise if no	stored ho	t water (th	is includes	instantan	eous com	bi boilers)	enter '0' in	box (50)					
Hot wa	ater stora	age loss	factor fr	om Tabl	e 2 (kW	h/litre/da	ıy)				0.	.02		(51)
Volum	e factor	from Ta	ble 2a								1.	.03		(52)
Tempe	erature f	actor fro	m Table	2b							0	.6		(53)
•••			storage	, kWh/ye	ear			((50) x (51) x (52) x	(53) =	1.	03		(54)
	. , .	54) in (5									1.	.03		(55)
Water		i	culated f	i	i		i	((56)m = (· · ·				1	
(56)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01	iv 11	(56)
		1							-			m Append		
(57)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)

Stroma FSAP 2009 Version: 1.5.0.85 (SAP 9.90) - http://www.stroma.com

STROMA TECHNOLOGY

Primar	y circuit	loss (an	inual) fro	om Table	e 3						30	60		(58)
	•				`	,	(58) ÷ 36	• • •						
(mo				le H5 if t	here is s		er heatir	-	<u> </u>		stat)		1	
(59)m=	30.58	27.62	30.58	29.59	30.58	29.59	30.58	30.58	29.59	30.58	29.59	30.58	l	(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat requ	uired for	water he	eating ca	alculated	for eacl	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	219.87	194.09	204.54	184.32	181.33	163.04	157.54	171.55	170.83	191.09	200.83	214.91		(62)
Solar Dł	-IW input o	calculated	using App	endix G or	Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	on to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or V	WWHRS	applies	, see Ap	pendix C	3)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter											
(64)m=	219.87	194.09	204.54	184.32	181.33	163.04	157.54	171.55	170.83	191.09	200.83	214.91		-
								Outp	out from wa	ater heate	r (annual)	12	2253.94	(64)
Heat g	ains fro	m water	heating,	kWh/mo	onth 0.28	5 x [0.85	× (45)m	n + (61)n	n] + 0.8 x	x [(46)m	+ (57)m	+ (59)m	(]	
(65)m=	102.37	90.96	97.27	89.6	89.55	82.53	81.64	86.3	85.12	92.8	95.09	100.72		(65)
inclu	ide (57)	m in calo	culation of	of (65)m	only if c	ylinder is	s in the c	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ternal ga	ains (see	Table 5	and 5a):									
Metab	olic gain	s (Table	5), Wat	ts										
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	156.6	156.6	156.6	156.6	156.6	156.6	156.6	156.6	156.6	156.6	156.6	156.6		(66)
Lightin	g gains	(calcula	ted in Ap	pendix l	L, equati	on L9 oi	r L9a), a	lso see	Table 5					
(67)m=	52.82	46.91	38.15	28.88	21.59	18.23	19.7	25.6	34.36	43.63	50.92	54.29		(67)
Applia	nces ga	ins (calc	ulated in	Append	dix L, eq	uation L	13 or L1:	3a), alsc	see Tal	ble 5				
(68)m=	353.71	357.38	348.13	328.44	303.58	280.22	264.61	260.94	270.19	289.88	314.74	338.1		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a)	, also se	e Table	5				
(69)m=	53.27	53.27	53.27	53.27	53.27	53.27	53.27	53.27	53.27	53.27	53.27	53.27		(69)
Pumps	and fai	ns gains	(Table 5											
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0		(70)
Losses	se.g. ev	aporatio	n (negat	tive valu	es) (Tab	le 5)								
(71)m=		-104.4	-104.4	-104.4	-104.4	, -104.4	-104.4	-104.4	-104.4	-104.4	-104.4	-104.4		(71)
Water	heating	gains (T	able 5)											
(72)m=		135.36	130.74	124.45	120.37	114.62	109.74	116	118.22	124.73	132.08	135.37		(72)
		gains =					m + (67)m							
(73)m=		645.12	622.49	587.24	551.01	518.54	499.51	508.01	528.24	563.71	603.21	633.23		(73)
	lar gains													
			using sola	r flux from	Table 6a a	and assoc	iated equa	tions to co	onvert to th	e applicab	le orientat	ion.		

Northeast 0.9x	0.77		x	9.0	6	x	4	1.13	x	0.63	x	0.8	=		137.9	(75)
Northeast 0.9x	0.77		x	9.	6	x	(67.8	x	0.63	x	0.8	=	2	227.33	(75)
Northeast 0.9x	0.77		x	9.	6	x	8	9.77	x	0.63	x	0.8	=	:	300.99	(75)
Northeast 0.9x	0.77		x	9.	6	x	9	97.5	x	0.63	x	0.8	=	:	326.92	(75)
Northeast 0.9x	0.77		x	9.	6	x	g	2.98	x	0.63	x	0.8	=	:	311.76	(75)
Northeast 0.9x	0.77		x	9.	6	x	7	5.42	x	0.63	x	0.8	=	2	252.88	(75)
Northeast 0.9x	0.77		x	9.	6	x	5	51.24	x	0.63	x	0.8	=		171.82	(75)
Northeast 0.9x	0.77		x	9.	6	x	:	29.6	x	0.63	x	0.8	=		99.25	(75)
Northeast 0.9x	0.77		x	9.	6	x	1	4.52	x	0.63	x	0.8	=		48.7	(75)
Northeast 0.9x	0.77		x	9.0	6	x		9.36	x	0.63	x	0.8	=		31.39	(75)
Southwest _{0.9x}	0.77		x	10.	42	x	3	37.39]	0.63	x	0.8	=		136.07	(79)
Southwest _{0.9x}	0.77		x	2.2	25	x	3	37.39		0.63	x	0.8	=		29.38	(79)
Southwest _{0.9x}	0.77		x	10.	42	x	6	3.74]	0.63	x	0.8	=	2	231.96	(79)
Southwest _{0.9x}	0.77		x	2.2	25	x	6	3.74]	0.63	x	0.8	=		50.09	(79)
Southwest _{0.9x}	0.77		x	10.	42	x	8	4.22	j	0.63	x	0.8	=		306.5	(79)
Southwest _{0.9x}	0.77		x	2.2	25	x	8	4.22]	0.63	x	0.8	=		66.18	(79)
Southwest _{0.9x}	0.77		x	10.	42	x	1	03.49	1	0.63	x	0.8	=		376.64	(79)
Southwest _{0.9x}	0.77		x	2.2	25	x	1	03.49	Ī	0.63	x	0.8	= =		81.33	(79)
Southwest _{0.9x}	0.77		x	10.	42	x	1	13.34	Ī	0.63	x	0.8	=	4	412.48	(79)
Southwest _{0.9x}	0.77		x	2.2	25	x	1	13.34	1	0.63	x	0.8	=		89.07	(79)
Southwest _{0.9x}	0.77		x	10.	42	x	1	15.04	İ	0.63	x	0.8	=	4	418.69	(79)
Southwest _{0.9x}	0.77		x	2.2	25	x	1	15.04	1	0.63	x	0.8	=		90.41	(79)
Southwest _{0.9x}	0.77		x	10.	42	x	1	12.79]	0.63	x	0.8	=	4	410.49	(79)
Southwest _{0.9x}	0.77		x	2.2	25	x	1	12.79	j	0.63	x	0.8	=		88.64	(79)
Southwest _{0.9x}	0.77		x	10.	42	x	1	05.34	1	0.63	x	0.8	=		383.38	(79)
Southwest _{0.9x}	0.77		x	2.2	25	x	1	05.34]	0.63	x	0.8	=		82.78	(79)
Southwest _{0.9x}	0.77		x	10.	42	x	9	92.9]	0.63	x	0.8	=		338.09	(79)
Southwest _{0.9x}	0.77		x	2.2	25	x	9	92.9	1	0.63	x	0.8	=		73	(79)
Southwest _{0.9x}	0.77		x	10.	42	x	7	2.36	Ī	0.63	x	0.8	=	2	263.36	(79)
Southwest0.9x	0.77		x	2.2	25	x	7	2.36	İ	0.63	x	0.8	= =		56.87	(79)
Southwest _{0.9x}	0.77		x	10	42	x	4	4.83	İ	0.63	x	0.8	=		163.14	(79)
Southwest _{0.9x}	0.77		x	2.2	25	x	4	4.83	İ	0.63	x	0.8	=		35.23	(79)
Southwest0.9x	0.77		x	10.	42	x	3	1.95	İ	0.63	x	0.8	=		116.28	(79)
Southwest _{0.9x}	0.77		x	2.2	25	x	3	1.95	İ	0.63	x	0.8	=		25.11	(79)
L									-							
Solar gains in	watts, ca	alcula	ted	for eac	h month	۱			(83)m	n = Sum(74)m	n(82)m	1		_		
(83)m= 204.04	361.02	510.8	58	685.29	802.53	8	36.03	810.89	719	.04 582.92	2 419.4	7 247.07	172.77			(83)

Total gains – internal and solar (84)m = (73)m + (83)m , watts (84)m= 853.63 1006.15 1133.06 1272.53 1353.54 1354.56 1310.4 1227.05 1111.16 983.18 850.27 806 (4) 7. Mean internal temperature (heating season) 6 <td< th=""><th colspan="12"></th><th></th><th></th><th></th></td<>															
(84)m= 853.63 1006.15 1133.06 1272.53 1353.54 1354.56 1310.4 1227.05 1111.16 983.18 850.27 806 (i) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (i) Utilisation factor for gains for living area, h1,m (see Table 9a) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(83)m=	204.04	361.02	510.58	685.29	802.53	836.03	810.89	719.04	582.92	419.47	247.07	172.77		(83)
7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 Utilisation factor for gains for living area, h1,m (see Table 9a)	Total g	ains – ir	nternal a	ind solar	(84)m =	= (73)m -	⊦ (83)m	, watts							
Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 Utilisation factor for gains for living area, h1,m (see Table 9a) 1	(84)m=	853.63	1006.15	1133.06	1272.53	1353.54	1354.56	1310.4	1227.05	1111.16	983.18	850.27	806		(84)
Utilisation factor for gains for living area, h1,m (see Table 9a)	7. Me	an inter	nal temp	erature	(heating	season)								
	Temp	erature	during h	eating p	eriods ir	n the livir	ng area f	from Tab	ole 9, Th	1 (°C)				21	(85)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	Utilisa	ation fac	tor for g	ains for l	iving are	ea, h1,m	(see Ta	ble 9a)							
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

(86)m= 0.91 0.87 0.81 0.72 0.59 0.44 0.31 0.32 0.54 0.75 0.88 0.92 Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m= 19.05 19.38 19.84 20.29 20.88 20.97 20.82 20.35 19.57 19.08 Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (89)m= 19.92 19.93 19.93 19.93 19.93 19.93 19.93 19.94 19.93 (89)m= 19.92 19.93 19.93 19.93 19.93 19.94 19.93 (89)m= 0.9 0.86 0.78 0.84 0.34 0.33 0.25 0.47 0.71 0.86 0.9 (80)m= 17.36 17.84 18.48 19.1 19.82 19.35 19.35 19.32 19.37 19.37 19.21 18.71 18.09 (90)m= 18.04 18.46 19.03 19.85 20.05 20.28 20.36																
(87)m= 19.05 19.38 19.84 20.29 20.88 20.97 20.97 20.82 20.35 19.57 19.08 Temperature during heating periods in rest of dwelling from Table 9, Th2 (*C) (8)m= 19.92 19.93 19.93 19.95 19.96 19.97 19.97 19.97 19.96 19.95 19.94 19.93 Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (8)m= 0.8 0.70 0.86 0.9 0.8	(86)m=	0.91	0.87	0.81	0.72	0.59	0.44	0.31	0.32	0.54	0.75	0.88	0.92		(86)	
(87)m= 19.05 19.38 19.84 20.29 20.88 20.97 20.97 20.82 20.35 19.57 19.08 Temperature during heating periods in rest of dwelling from Table 9, Th2 (*C) (8)m= 19.92 19.93 19.93 19.95 19.96 19.97 19.97 19.97 19.96 19.95 19.94 19.93 Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (8)m= 0.8 0.70 0.86 0.9 0.8	Mean	interna	temper	ature in	living are	ea T1 (fo	ollow ste	ps 3 to 7	7 in Tabl	e 9c)						
	г				<u> </u>	<u>`</u>	i	i	i i i i i i i i i i i i i i i i i i i	<u> </u>	20.35	19.57	19.08		(87)	
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.9 0.86 0.79 0.69 0.54 0.38 0.23 0.25 0.47 0.71 0.86 0.9 (89)m= 0.78 0.78 0.54 0.38 0.23 0.25 0.47 0.71 0.86 0.9 Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (80)m= 17.36 17.84 18.48 19.1 19.82 19.95 19.95 19.97 19.21 18.12 17.42 (LA = Living area + (4) = Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (92)m= 18.04 18.46 19.03 19.58 20.05 20.28 20.36 20.2 19.67 18.7 18.09 Abd 18.46 19.03 19.58 20.05 20.28 20.36 20.2 19.67 18.7 18.09 Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calcu the utilisation factor for gains, hm:	Tempe	erature	during h	eating p	periods ir	n rest of	dwelling	from Ta	able 9, T	h2 (°C)			-			
	(88)m=	19.92	19.93	19.93	19.95	19.96	19.97	19.97	19.97	19.96	19.95	19.94	19.93		(88)	
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (80)m= 17.36 17.84 18.48 19.1 19.82 19.95 19.95 19.79 19.21 18.12 17.42 (B)m= 17.36 17.84 18.48 19.1 19.82 19.95 19.95 19.97 19.21 18.12 17.42 (B)m= 17.36 17.84 18.48 19.03 19.58 20.25 20.28 20.36 20.2 19.67 18.7 18.09 Apply adjustment to the mean internal temperature from Table 4e, where appropriate 18.04 18.46 19.03 19.58 20.05 20.28 20.36 20.32 19.67 18.7 18.09 Apply adjustment to the mean internal temperature from Table 4e, where appropriate 18.04 18.46 19.03 19.58 20.05 20.28 20.36 20.2 19.67 18.7 18.09 Apply adjustment to the mean internal temperature from Table 8 10.10 Aug Sep Oct Nov Dec Utilisation factor for gains, hm: 19.41 31.08 54.04 342.48 340.86 542.2 685.13 710.87 <td< td=""><td>Utilisat</td><td>tion fac</td><td>tor for g</td><td>ains for</td><td>rest of d</td><td>welling,</td><td>h2,m (se</td><td>e Table</td><td>9a)</td><td></td><td></td><td></td><td>-</td><td></td><td></td></td<>	Utilisat	tion fac	tor for g	ains for	rest of d	welling,	h2,m (se	e Table	9a)				-			
	(89)m=	0.9	0.86	0.79	0.69	0.54	0.38	0.23	0.25	0.47	0.71	0.86	0.9		(89)	
$fLA = Living area \Rightarrow (4) = fLA \times T1 + (1 - fLA) \times T2$ $(92)m = 18.04 18.46 19.03 19.58 20.05 20.28 20.36 20.2 19.67 18.7 18.09$ Apply adjustment to the mean internal temperature from Table 4e, where appropriate $(93)m = 18.04 18.46 19.03 19.58 20.05 20.28 20.36 20.2 19.67 18.7 18.09$ 8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calcu the utilisation factor for gains using Table 9a $Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec$ Utilisation factor for gains, hm: $(94)m = 0.87 0.83 0.76 0.68 0.55 0.4 0.26 0.28 0.49 0.7 0.84 0.88$ Useful gains, hmGm, W = (94)m x (84)m $(95)m = 745.52 834.98 866.66 860.98 737.69 541.04 342.48 340.86 542.2 685.13 710.87 708.53$ Monthly average external temperature from Table 8 $(96)m = 4.5 5 6.8 8.7 11.7 14.6 16.9 16.9 14.3 10.8 7 4.9$ Heat loss rate for mean internal temperature, Lm, W = ((39)m × ((93)m - (96)m) $(97)m = 1451.03 1422.06 1285.63 1128.48 855.31 578.56 350.61 350.27 606.48 920.11 1226.6 1397.63$ Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m $(98)m = 524.9 397.21 319.15 192.57 87.51 0 0 0 0 174.82 371.32 512.69$ $Total per year (kWhyear) = Sum(08), i.e. or = Space heating requirement in kWh/m²/year Pb. Energy requirement in kWh/m²/year Pb. Energy requirement in kWh/m²/year Pb. Energy requirement in kWh/m²/year Pb. Energy requirement in kWh/m²/year Pc. Fraction of space heating, space cooling or water heating provided by a community scheme. Fraction of space heating new scheat from power stations. See Appendix C. Fraction of heat from Community scheme at the prover stations. See Appendix C. Fraction of total space heat from Community CHP Fraction of community heat from heat source 2 Fraction of total space heat from Community CHP Fraction of total space heat from community CHP Fraction of total space heat from community CHP Fraction of total space heat from community CHP Fraction of total space heat from community CHP Fraction of total s$	Mean	interna	temper	ature in	the rest	of dwelli	ing T2 (f	ollow ste	eps 3 to	7 in Tabl	e 9c)	-	-			
Mean internal temperature (for the whole dwelling) = fLA x T1 + (1 - fLA) x T2 (92)m= 18.04 18.46 19.03 19.58 20.05 20.28 20.36 20.2 19.67 18.7 18.09 Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.04 18.46 19.03 19.58 20.05 20.28 20.36 20.2 19.67 18.7 18.09 5. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calcu the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.87 0.83 0.76 0.68 0.55 0.4 0.26 0.28 0.49 0.7 0.84 0.88 Useful gains, hmGm, W = (94)m x (84)m (95)m= 74.52 834.98 866.6 80.98 737.89 541.04 342.48 340.86 542.2 685.13 710.87 708.53 Monthy average external temperature from Table 8 (96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 16.9 14.3 10.8 7 4.9 Heat loss rate for mean internal temperature, Lm, W=[(39)m - (95)m] x (41)m (98)m= 524.9 397.21 319.15 192.57 87.51 0 0 0 0 174.82 371.32 612.69 Total per year (WWhyear) = Sum(98),, u = Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 524.9 397.21 319.15 192.57 87.51 0 0 0 0 174.82 371.32 612.69 Total per year (kWhyear) = Sum(98),, u = Space heating requirement in kWh/m²/year 50. Energy requirements – Community heating scheme Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none Fraction of space heat from community system 1 – (301) = The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources: the includes bolins, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of total space heat from Community CHP Fraction of tot	(90)m=	17.36	17.84	18.48	19.1	19.62	19.87	19.95	19.95	19.79	19.21	18.12	17.42		(90)	
(92)m= 18.04 18.46 19.03 19.58 20.05 20.28 20.36 20.2 19.67 18.7 18.09 Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.04 18.46 19.03 19.58 20.05 20.28 20.36 20.36 20.2 19.67 18.7 18.09 8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calcu the utilisation factor for gains, suing Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.87 0.83 0.76 0.68 0.55 0.4 0.26 0.28 0.49 0.7 0.84 0.88 Useful gains, hmGm, W = (94)m x (84)m (95)m= 745.52 83.49.8 866.66 80.98 73.69 541.04 342.48 340.86 542.2 685.13 710.87 708.53 Monthly average external temperature from Table 8 (96)m= 14.5 16.9 14.3 10.8 7 4.9 144.1413										1	iLA = Livin	ig area ÷ (4) =	0.4	(91)	
Apply adjustment to the mean internal temperature from Table 4e, where appropriate (93)m= 18.04 18.46 19.03 19.58 20.05 20.28 20.36 20.2 19.67 18.7 18.09 3. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calcule the utilisation factor for gains, suing Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.87 0.83 0.76 0.68 0.55 0.4 0.26 0.28 0.49 0.7 0.84 0.88 Useful gains, hmGm, W = (94)m x (84)m (95)m= 745.52 334.98 866.66 860.98 737.69 541.04 342.48 340.86 542.2 685.13 710.87 708.53 Monthly average external temperature from Table 8 (96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 16.9 14.3 10.8 7 4.9 Heat loss rate for mean internal temperature, Lm, W = ((39)m × ((39)m · (96)m) (97)m= 1451.03 1426.06 1295.63 1128.45 855.31 578.56 350.61 350.27 606.46 320.11 1226.6 1397.63 Space heating requirement for each month, kWh/month = 0.024 × I(97)m - (95)m] × (41)m (98)m= 524.9 397.21 319.15 192.57 87.51 0 0 0 0 174.82 371.32 512.69 Total per year (kWh/year) = Sum(98) _{1.48.2} = Space heating requirement in kWh/m ² /year 92. Energy requirement in kWh/m ² /year 93. Energy requirement in KWh/m ² /year 94. Energy requirement in kWh/m ² /year 95. Energy requirement in kWh/m ² /year 95. Energy requirement in kWh/m ² /year 96. Energy requirement in kWh/m ² /year 97. Energy requirement in kWh/m ² /year 98. Energy requirement in kWh/m ² /year 99. Energy requirement in kWh/m ² /year 90. Energy requirement in kWh/m ² /year 91. Energy requirement in kWh/m ² /year 92. Energy requirement in kWh/m ² /year 93. Energy requirement in kWh/m ² /year 94. Energy requirement in kWh/m ² /year 95. Energy requirement in kWh/m ² /year 96. Energy requirement in kWh/m ² /year 97. Energy requirement in kWh/m ² /year 98. Energy requirement in kWh/m ² /year 99. Energy requirement in kWh/m ² /year 91. Energy requirement in kWh/m ² /year 92. Energy requirement	Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	.A) × T2						
(3)n= 18.04 18.46 19.03 19.58 20.06 20.28 20.36 20.2 19.67 18.7 18.09 8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calcue the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.87 0.83 0.76 0.68 0.55 0.4 0.26 0.28 0.49 0.7 0.84 0.88 Useful gains, hmGm, W = (94)m x (84)m (95)m= 745.52 834.98 866.66 80.98 737.69 541.04 342.48 340.86 542.2 685.13 710.87 708.53 Monthly average external temperature from Table 8 (96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 14.3 10.8 7 4.9 Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m - (96)m] (97)m= 1451.03 142.66 1295.63 1128.45 855.31 578.56	(92)m=	18.04	18.46	19.03	19.58	20.05	20.28	20.36	20.36	20.2	19.67	18.7	18.09		(92)	
8. Space heating requirement Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calcu U Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m 0.83 0.76 0.68 0.55 0.4 0.26 0.28 0.49 0.7 0.84 0.88 Useful gains, hmGm, W = (94)m x (84)m (95)m= 745.52 834.98 866.66 80.98 737.69 541.04 342.48 340.86 542.2 685.13 710.87 708.53 Monthly average external temperature from Table 8 (96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 14.3 10.8 7 4.9 Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m] (97)m= 1451.03 1426.6 1295.63 1128.45 855.31 578.56 350.61 350.27 606.46 920.11 1226.6 1397.63 Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 524.9 397.21 31	Apply	adjustn	nent to t	he mear	n interna	l temper	ature fro	m Table	4e, whe	ere appro	opriate					
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calcut the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.87 0.83 0.76 0.68 0.55 0.4 0.26 0.28 0.49 0.7 0.84 0.88 Useful gains, hmGm, W = (94)m x (84)m (95)m= 745.52 834.98 866.68 860.98 737.69 541.04 342.48 340.86 542.2 685.13 710.87 708.53 Monthly average external temperature from Table 8 (96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 16.9 14.3 10.8 7 4.9 Heat loss rate for mean internal temperature, Lm, W = [(39)m x [(93)m – (96)m] (97)m= 1451.03 1426.06 1295.63 1128.45 855.31 578.56 350.61 350.27 606.46 920.11 1226.6 1397.63 Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$ (98)m= 524.9 397.21 319.15 192.57 87.51 0 0 0 0 174.82 371.32 512.69 Total per year (kWh/year) = Sum(98)s.v = Space heating requirement in kWh/m ² /year 2b. Energy requirements – Community heating scheme This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from community system 1 – (301) = The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the includes bolies, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of heat from Community CHP Fraction of total space heat from Community CHP Fraction of total space heat from Community CHP Fraction of total space heat from community heat source 2 (302) × (303a) = Fraction of total space heat from community heat source 2 (302) × (303a) =	(93)m=	18.04	18.46	19.03	19.58	20.05	20.28	20.36	20.36	20.2	19.67	18.7	18.09		(93)	
the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.87 0.83 0.76 0.68 0.55 0.4 0.26 0.28 0.49 0.7 0.84 0.88 Useful gains, hmGm, W = (94)m x (84)m (96)m= 745.52 834.98 866.66 860.98 737.69 541.04 342.48 340.86 542.2 685.13 710.87 708.53 Monthly average external temperature from Table 8 (96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 16.9 14.3 10.8 7 4.9 Heat loss rate for mean internal temperature, Lm, W = [(39)m x [(93)m - (96)m] (97)m= 1451.03 1426.06 1295.63 1128.45 855.31 578.56 350.61 350.27 606.46 920.11 1226.6 1397.63 Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$ (98)m= 524.9 397.21 319.15 192.57 87.51 0 0 0 0 174.82 371.32 512.69 Total per year (kWhiyear) = Sum(98)_{-65.17} = Space heating requirement in kWh/m ² /year Sb. Energy requirements – Community heating scheme This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from several sources. The procedure allows for CHP and up to four other heat sources; the includes bolies, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of community CHP Fraction of total space heat from Community CHP Fraction of total space heat from Community CHP Fraction of total space heat from Community CHP Fraction of total space heat from Community CHP Fraction of total space heat from community heat source 2 (302) × (303a) = Fraction of total space heat from community CHP	8. Spa	ice hea	ting requ	uirement	t											
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Utilisation factor for gains, hm: (94)m= 0.87 0.83 0.76 0.68 0.55 0.4 0.26 0.28 0.49 0.7 0.84 0.88 Useful gains, hmGm, W = (94)m x (84)m (95)m= 745.52 834.98 866.66 860.98 737.69 541.04 342.48 340.86 542.2 685.13 710.87 708.53 Monthly average external temperature from Table 8 (96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 14.3 10.8 7 4.9 Heat loss rate for mean internal temperature, Lm , W =[(39)m × [(93)m – (96)m] (97)m – (95)m] × (41)m (98)m= 524.9 397.21 319.15 192.57 87.51 0 0 0 174.82 371.32 512.69 Total per year (kWh/year) = Sum(98)s2 $=$ <td cotal="" heating="" in="" kw<="" requirement="" space="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>ned at ste</td><td>ep 11 of</td><td>Table 9</td><td>o, so tha</td><td>t Ti,m=(</td><td>76)m an</td><td>d re-calc</td><td>ulate</td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ned at ste</td> <td>ep 11 of</td> <td>Table 9</td> <td>o, so tha</td> <td>t Ti,m=(</td> <td>76)m an</td> <td>d re-calc</td> <td>ulate</td> <td></td>							ned at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
Utilisation factor for gains, hm: (94)m= 0.87 0.83 0.76 0.68 0.55 0.4 0.26 0.28 0.49 0.7 0.84 0.88 Useful gains, hmGm, W = (94)m x (84)m (95)m= 745.52 834.98 866.66 860.98 737.69 541.04 342.48 340.86 542.2 685.13 710.87 708.53 Monthly average external temperature from Table 8 (96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 14.3 10.8 7 4.9 Heat loss rate for mean internal temperature, Lm , W =[(39)m × [(93)m – (96)m] (97)m= [97)m= [1451.03] 1426.06 1295.63 1128.45 855.31 578.56 350.61 350.27 606.46 920.11 122.66 1397.63 Space heating requirement for each month, kWh/month = 0.024 x [(97)m – (95)m] x (41)m (98)m= 524.9 397.21 319.15 192.57 87.51 0 0 0 174.82 371.32 512.69 Total per year (kWh/year) = Sum(98)sz = Space heating requirement in kWh/m²/year [90 .6 174.82 371.32	the util	lisation			L L	1	i		i				· · · · ·	I		
(94)m= 0.87 0.83 0.76 0.68 0.55 0.4 0.26 0.28 0.49 0.7 0.84 0.88 Useful gains, hmGm , W = (94)m x (84)m (95)m= 745.52 834.98 866.66 860.98 737.69 541.04 342.48 340.86 542.2 685.13 710.87 708.53 Monthly average external temperature from Table 8 (96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 14.3 10.8 7 4.9 Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m] (97)m= 1451.03 1426.06 1295.63 1128.45 855.31 578.56 350.61 350.27 606.46 920.11 122.66 1397.63 Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m (98)m= 524.9 397.21 319.15 192.57 87.51 0 0 0 174.82 371.32 512.69	L				<u> </u>	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Useful gains, hmGm , W = (94)m x (84)m (95)m= 745.52 834.98 866.66 860.98 737.69 541.04 342.48 340.86 542.2 685.13 710.87 708.53 Monthly average external temperature from Table 8 (96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 16.9 14.3 10.8 7 4.9 Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m – (96)m] (97)m= 1451.03 1426.06 1295.63 1128.45 855.31 578.56 350.61 350.27 606.46 920.11 1226.6 1397.63 Space heating requirement for each month, kWh/month = 0.024 x [(97)m – (95)m] x (41)m (98)m= 524.9 397.21 319.15 192.57 87.51 0 0 0 0 174.82 371.32 512.69 Total per year (kWh/year) = Sum(98) ₁₋₃₉₋₁₂ = Space heating requirement in kWh/m ² /year 9b. Energy requirements – Community heating scheme This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from community system 1 – (301) = The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of heat from Community CHP Fraction of total space heat from Community CHP Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2	г				r										(0.4)	
	Ľ						0.4	0.26	0.28	0.49	0.7	0.84	0.88		(94)	
Monthly average external temperature from Table 8 (96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 16.9 14.3 10.8 7 4.9 Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m – (96)m] (97)m= 1451.03 1426.06 1295.63 1128.45 855.31 578.56 350.61 350.27 606.46 920.11 1226.6 1397.63 Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$ (98)m= 524.9 397.21 319.15 192.57 87.51 0 0 0 174.82 371.32 512.69 Total per year (kWh/year) = Sum(98)	г			<u>`</u>	ŕ	r Ó	541.04	242.40	240.96	542.2	605 40	740.07	709.52	l	(95)	
	Ľ							342.40	340.80	J4Z.Z	000.13	/10.8/	708.53		(95)	
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m- (96)m] (97)m= 1451.03 1426.06 1295.63 1128.45 855.31 578.56 350.61 350.27 606.46 920.11 1226.6 1397.63 Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$ (98)m= 524.9 397.21 319.15 192.57 87.51 0 0 0 174.82 371.32 512.69 Total per year (kWh/year) = Sum(98)se.12 = Space heating requirement in kWh/m ² /year 9b. Energy requirements – Community heating scheme This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none Fraction of space heat from community system 1 – (301) = The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of heat from Community CHP Fraction of total space heat from Community CHP Fraction of total space heat from community CHP Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from co	-		-		ri	1	i	16.9	16.9	14.3	10.8	7	4.9		(96)	
	Ľ														. ,	
$(98)m = 524.9 397.21 319.15 192.57 87.51 0 0 0 174.82 371.32 512.69$ $Total per year (kWh/year) = Sum(98)_{1.59.12} = Space heating requirement in kWh/m2/year$ $(b) Energy requirements - Community heating scheme$ This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none Fraction of space heat from community system 1 - (301) = The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of community heat from heat source 2 Fraction of total space heat from Community CHP Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction fraction	-				· · ·	1	r		<u> </u>			1226.6	1397.63		(97)	
$(98)m = 524.9 397.21 319.15 192.57 87.51 0 0 0 174.82 371.32 512.69$ $Total per year (kWh/year) = Sum(98)_{1.59.12} = Space heating requirement in kWh/m2/year$ $(b) Energy requirements - Community heating scheme$ This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none Fraction of space heat from community system 1 - (301) = The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of community heat from heat source 2 Fraction of total space heat from Community CHP Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Fraction fraction	Space	heatin	a require	ement fo	r each n	nonth, k	u Wh/moni	th = 0.02	24 x [(97	ı)m – (95)m] x (4	1)m				
Space heating requirement in kWh/m²/year 9b. Energy requirements – Community heating scheme This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none Fraction of space heat from community system 1 – (301) = The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of heat from Community CHP Fraction of total space heat from Community CHP Fraction of total space heat from community heat source 2 (302) x (303a) = Fraction of total space heat from community heat source 2	· -		<u> </u>		î .	· · ·	i	r	r	í Ó	<u> </u>	ŕ	512.69			
9b. Energy requirements – Community heating scheme This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none Fraction of space heat from community system 1 – (301) = The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of heat from Community CHP Fraction of total space heat from Community CHP Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2	L								Tota	l per year	(kWh/yea	r) = Sum(9	98)15,912 =	2580.18	(98)	
This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none Fraction of space heat from community system 1 – (301) = The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of heat from Community CHP Fraction of total space heat from Community CHP Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Stracting theat from community heat source 2	Space	heatin	g require	ement in	kWh/m²	?/year								29.03	(99)	
This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none Fraction of space heat from community system 1 – (301) = The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of heat from Community CHP Fraction of total space heat from Community CHP Fraction of total space heat from community heat source 2 Fraction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Straction of total space heat from community heat source 2 Stracting theat from community heat source 2	9b. Ene	ergy rec	uiremer	nts – Coi	mmunity	heating	scheme	•								
Fraction of space heat from community system 1 – (301) = [The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. [Fraction of heat from Community CHP [Fraction of total space heat from Community CHP [Fraction of total space heat from Community CHP [Fraction of total space heat from Community CHP [Fraction of total space heat from community heat source 2 [Fraction of total space heat from community heat source 2 [State of total space heat from community heat source 2 [State of total space heat from community heat source 2 [State of total space heat from community heat source 2 [State of total space heat from community heat source 2 [State of total space heat from community heat source 2 [State of total space heat from community heat source 2 [State of total space heat from community heat source 2 [State of total space heat from community heat source 2 [State of total space heat from community heat source 2 [State of total space heat from community heat source 2 [unity scl	heme.		_	
The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of heat from Community CHP Fraction of community heat from heat source 2 Fraction of total space heat from Community CHP Fraction of total space heat from Community CHP (302) × (303a) = Fraction of total space heat from community heat source 2 (302) × (303b) =	Fractior	n of spa	ice heat	from se	condary	/supplen	nentary l	heating	(Table 1	1) '0' if n	one			0	(301)	
includes boilers, heat pumps, geothermal and waste heat from power stations. See Appendix C. Fraction of heat from Community CHP Fraction of community heat from heat source 2 Fraction of total space heat from Community CHP Fraction of total space heat from community heat source 2 (302) x (303a) = (302) x (303b) =	Fractior	n of spa	ice heat	from co	mmunity	v system	1 – (301	1) =						1	(302)	
Fraction of heat from Community CHP		-	-								up to four	other heat	sources; ti	he latter		
Fraction of total space heat from Community CHP $(302) \times (303a) =$ Fraction of total space heat from community heat source 2 $(302) \times (303b) =$						aste neat i		310113.	See Appel	IUIX C.				0.6	(303a)	
Fraction of total space heat from community heat source 2 $(302) \times (303b) =$	Fraction of community heat from heat source 2												0.4	(303b)		
	Fractior	n of tota	al space	heat fro	m Comn	nunity C	HP				(3	02) x (303	3a) =	0.6	(304a)	
Factor for control and charging method (Table 4c(3)) for community heating system	Fractior	n of tota	al space	heat fro	m comm	nunity he	eat sourc	e 2			(3	02) x (303	3b) =	0.4	(304b)	
	Factor f	or cont	rol and o	charging	method	(Table	4c(3)) fo	r commu	unity hea	ating sys	tem			1	(305)	

Distribution loss factor (Table 12c) for community heating system		1.05	(306)
Space heating		kWh/year	-
Annual space heating requirement		2580.18]
Space heat from Community CHP	(98) x (304a) x (305) x (306) =	1625.51	(307a)
Space heat from heat source 2	(98) x (304b) x (305) x (306) =	1083.68	(307b)
Efficiency of secondary/supplementary heating system in % (from T	able 4a or Appendix E)	0	(308
Space heating requirement from secondary/supplementary system	(98) x (301) x 100 ÷ (308) =	0	(309)
Water heating Annual water heating requirement If DHW from community scheme:		2253.94]
Water heat from Community CHP	(64) x (303a) x (305) x (306) =	1419.98	(310a)
Water heat from heat source 2	(64) x (303b) x (305) x (306) =	946.66	(310b)
Electricity used for heat distribution	0.01 × [(307a)(307e) + (310a)(310e)] =	50.76	(313)
Cooling System Energy Efficiency Ratio		0	(314)
Space cooling (if there is a fixed cooling system, if not enter 0)	= (107) ÷ (314) =	0	(315)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from outs	side	0	(330a)
warm air heating system fans		0	(330b)
pump for solar water heating		0	(330g)
Total electricity for the above, kWh/year	=(330a) + (330b) + (330g) =	0	(331)
Energy for lighting (calculated in Appendix L)		373.11	(332)
Electricity generated by PVs (Appendix M) (negative quantity)		-262.91	(333)
Electricity generated by wind turbine (Appendix M) (negative quanti	ty)	0	(334)
10b. Fuel costs – Community heating scheme			

	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating from CHP	(307a) x	2.65 × 0.01 =	43.08 (340a)
Space heating from heat source 2	(307b) x	3.78 × 0.01 =	40.96 (340b)
Water heating from CHP	(310a) x	2.65 × 0.01 =	37.63 (342a)
Water heating from heat source 2	(310b) x	3.78 × 0.01 =	35.78 (342b)
		Fuel Price	
Pumps and fans	(331)	11.46 x 0.01 =	0 (349)
Energy for lighting	(332)	11.46 x 0.01 =	42.76 (350)
Additional standing charges (Table 12)			106 (351)
Energy saving/generation technologies			
Item 1		11.46 x 0.01 =	-30.13 (352)
Total energy cost	= (340a)(342e) + (345)(354) =		276.08 (355)

11b. SAP rating - Community heating sch	eme				
Energy cost deflator (Table 12)				0.47	(356)
Energy cost factor (ECF)	855) x (356)] ÷ [(4) + 45.0] =			0.97	(357)
SAP rating (section12)				86.48	(358)
12b. CO2 Emissions - Community heating	scheme				-
Electrical efficiency of CHP unit				25.58	(361)
Heat efficiency of CHP unit				58.32	(362)
		Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year	
Space heating from CHP) (307a)	(100 ÷ (362) =	2787.2 ×	0.2	551.86	(363)
less credit emissions for electricity -(307a)	× (361) ÷ (362) =	712.94 ×	0.53	-377.15	(364)
Water heated by CHP (310a)	< 100 ÷ (362) =	2434.79 ×	0.2	482.09	(365)
less credit emissions for electricity -(310a)	× (361) ÷ (362) =	622.8 ×	0.53	-329.46	(366)
Efficiency of heat source 2 (%)	If there is CHP using tw	o fuels repeat (363) to	(366) for the second fu	el 92	(367b)
CO2 associated with heat source 2	[(307b)+(310	0b)] x 100 ÷ (367b) x	0.2	= 436.96	(368)
Electrical energy for heat distribution	[(31	3) x	0.52	= 26.24	(372)
Total CO2 associated with community sys	ems (363	3)(366) + (368)(372)	= 790.55	(373)
CO2 associated with space heating (second	idary) (309	9) x	0	= 0	(374)
CO2 associated with water from immersion	heater or instantaneou	s heater (312) x	0.2	= 0	(375)
Total CO2 associated with space and wate	er heating (37:	3) + (374) + (375) =		790.55	(376)
CO2 associated with electricity for pumps	and fans within dwelling	(331)) x	0.52	= 0	(378)
CO2 associated with electricity for lighting	(33)	2))) x	0.52	= 192.9	(379)
Energy saving/generation technologies (33 Item 1	3) to (334) as applicable	e	0.53 x 0.01 =	-139.08	(380)
Total CO2, kg/year st	m of (376)(382) =			844.37	(383)
Dwelling CO2 Emission Rate (3	83) ÷ (4) =			9.5	(384)
El rating (section 14)				91.55	(385)
13b. Primary Energy – Community heating	scheme				
Electrical efficiency of CHP unit				25.58	(361)
Heat efficiency of CHP unit		Francis		58.32	(362)
		Energy kWh/year	Primary factor	P.Energy kWh/year	
Space heating from CHP) (307a)	< 100 ÷ (362) =	2787.2 ×	1.02	2842.94	(363)
less credit emissions for electricity -(307a)	× (361) ÷ (362) =	712.94 ×	2.92	-2081.8	(364)
Water heated by CHP (310a)	< 100 ÷ (362) =	2434.79 ×	1.02	2483.48	(365)
less credit emissions for electricity -(310a)	× (361) ÷ (362) =	622.8 ×	2.92	-1818.58	(366)
Efficiency of heat source 2 (%)	If there is CHP using tw	o fuels repeat (363) to	(366) for the second fu	el 92	(367b)

STROMA TECHNOLOGY

Energy associated with heat source 2	[(307b)+(310b)] x 100 ÷ (367b) x	1.02] = [2251.02	(368)
Electrical energy for heat distribution	[(313) x] = [148.21	(372)
Total Energy associated with community systems	(363)(366) + (368)(372)	=	3825.28	(373)
if it is negative set (373) to zero (unless specified othe	erwise, see C7 in Appendix C,)	[3825.28	(373)
Energy associated with space heating (secondary)	(309) x	0] = [0	(374)
Energy associated with water from immersion heater or	instantaneous heater(312) x	1.02] = [0	(375)
Total Energy associated with space and water heating	(373) + (374) + (375) =		[3825.28	(376)
Energy associated with space cooling	(315) x	2.92] = [0	(377)
Energy associated with electricity for pumps and fans with	ithin dwelling (331)) x	2.92] = [0	(378)
Energy associated with electricity for lighting	(332))) x	2.92] = [1089.49	(379)
Energy saving/generation technologies Item 1		2.92 × 0.	01 =	-767.7	(380)
Total Primary Energy, kWh/year sum	of (376)(382) =			4147.07	(383)

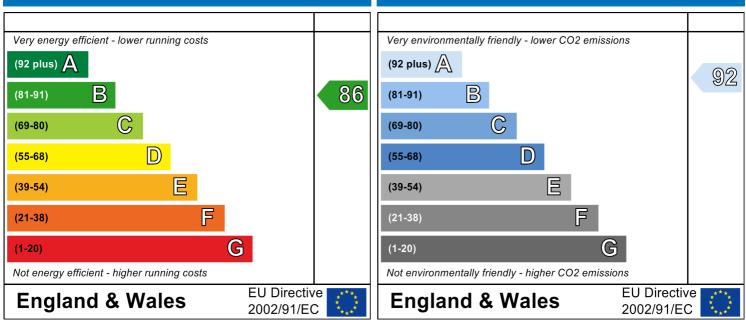
SAP 2009 Overheating Assessment

Calculated by Stroma FSAP 2009 program, produced and printed on 17 April 2015

Property Details: 07-14-40586 A07 PL1

Dwelling type: Located in: Region: Cross ventilation pose Number of storeys: Front of dwelling face Overshading: Overhangs: Thermal mass parame Night ventilation: Blinds, curtains, shutt Ventilation rate during Overheating Details:	s: eter: ers:	ather (a	ch):	0	t r unknown	roller blind		
Summer ventilation he Transmission heat los Summer heat loss coe	s coeffi	cient:	ent:	299.14 58.6 357.73				(P1) (P2)
Overhangs:								
Orientation:	Ratio:		Z_overhangs:					
South West (Side Elev) South West (Side Elev) North East (Side Elev)	0 0 0		- c 1 1 1					
Solar shading:								
Orientation:	Z blind	le ·	Solar access:	Over	hangs:	Z summer:		
South West (Side Elev)		15.	0.9	1	nanys.	0.54		(P8)
South West (Side Elev)			0.9	1		0.54		(P8)
North East (Side Elev)	0.6		0.9	1		0.54		(P8)
Solar gains:								
Ŭ								
Orientation		Area	Flux	g_	FF	Shading	Gains	
South West (Side Elev)		10.42	116.76	0.63	0.8	0.54	298.01	
South West (Side Elev) North East (Side Elev)	0.9 x 0.9 x	2.25 9.6	116.76 98.96	0.63 0.63	0.8 0.8	0.54 0.54	64.35 232.69	
NULLIT East (SIDE EIEV)	0.9 X	9.0	90.90	0.03	0.8	Total		(P3/P4)
Internal gains:							070.00	(,,
internal yains.								
Internal gains Total summer gains Summer gain/loss ratio Mean summer external Thermal mass temperat Threshold temperature	-		names valley)	51 11 3.1 15 1.3	.4	July 499.51 1094.57 3.06 17.8 1.3 22.16	August 508.01 1043.5 2.92 17.8 1.3 22.02	(P5) (P6) (P7)
Likelihood of high inte	ernal ten	nperatu	re	No	ot significant	Medium	Medium	า
Assessment of likelihood of high internal temperature: <u>Medium</u>								

Flat A07


Dwelling type: Date of assessment: Produced by: Total floor area: Mid floor Flat 16 April 2015 Aymon Winter 88.87 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

Code for Sustainable Homes Report

Assessor and House Details					
Assessor Name: Property Address:	Aymon Winter Flat A07	Assessor Number:	STRO014511		
Buiding regulation assessment					

	kg/m²/year
TER	15.37
DER	10.24
The following code calculations are taken from the Code for Sustainable Homes Technical Guid	e (Nov 10)
Ene 1 Assessment - Dwelling Emission Rate	

Total Energy Type CO2 Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2009 DER Worksheet		10.24	(ZC1)
TER		15.37	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		10.24	
% improvement DER/TER	33.4		

Total Energy Type CO2 Emissions for Codes Levels 6

	kg/m²/year	
DER accounting for SAP Section 16 allowances	10.24	(ZC1)
CO2 emissions from appliances, equation (L14)	15.74	(ZC2)
CO2 emissions from cooking, equation (L16)	2.04	(ZC3)
Net CO2 emissions	28	(ZC8)

Result:

Credits awarded for Ene 1 = 3.8

Code Level = 4

Ene 2 - Fabric energy Efficiency

Fabric energy Efficiency: 42.19

Credits awarded for Ene 2 = 5.4

Ene 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year	
Standard Case CO2 emissions		35.2	
Standard DER		17.42	
Actual Case CO2 emissions		28.02	
Actual DER		10.24	
Reduction in CO2 emissions	20.4		

Credits awarded for Ene 7 = 2

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

· Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.

Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified

· Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.

· All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPOA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.