Regulations Compliance Report

Approved Document L1A 2010 edition assessed by Stroma FSAP 2009 program, Version: 1.5.0.85 Printed on 17 April 2015 at 14:42:21

Project Information:

Assessed By: Aymon Winter (STRO014511) Building Type: Flat

Dwelling Details:

NEW DWELLING DESIGN STAGE

Site Reference: Lancaster Street Plot Reference: 07-14-40586 A15 PL1

Address: Flat A15

Client Details:

Name: H G Construction Ltd - Hitchin Address: 4 Hunting Gate, Hitchin, SG40TJ

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1 TER and DER

Fuel for main heating system: Mains gas (c), Mains gas (c)

Fuel factor: 1.00 (mains gas (c), mains gas (c))

Target Carbon Dioxide Emission Rate (TER)

18.49 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER)

11.62 kg/m²

OK

2 Fabric U-values

Element Average **Highest** OK External wall 0.15 (max. 0.30) 0.16 (max. 0.70) Floor 0.13 (max. 0.25) 0.13 (max. 0.70) OK Roof 0.13 (max. 0.35) OK 0.13 (max. 0.20) 1.60 (max. 2.00) **Openings** 1.60 (max. 3.30) OK

3 Air permeability

Air permeability at 50 pascals 6.00
Maximum 10.0 **OK**

4 Heating efficiency

Main Heating system: Community heating schemes - mains gas

Secondary heating system: None

5 Cylinder insulation

Hot water Storage: No cylinder

6 Controls

Space heating controls Charging system linked to use of community heating, programmer and TRVs OK

Hot water controls: No cylinder

7 Low energy lights

Percentage of fixed lights with low-energy fittings 100.0%
Minimum 75.0%

OK

8 Mechanical ventilation

Not applicable

9 Summertime temperature

Overheating risk (Thames valley): Slight OK

Regulations Compliance Report

Based on:

Overshading:

Windows facing: South East Windows facing: South East Windows facing: North East

Ventilation rate: Blinds/curtains:

Average or unknown

15.8m², Overhang twice as wide as window, ratio NaN 15.25m², Overhang twice as wide as window, ratio NaN 24.52m², Overhang twice as wide as window, ratio NaN

6.00

Light-coloured curtain or roller blind shutter closed 100% of daylight hours

10 Key features

External Walls U-value External Walls U-value External Walls U-value

Floors U-value

Community heating, heat from boilers - mains gas

Photovaltaic array

0.12 W/m²K 0.13 W/m²K 0.16 W/m²K 0.13 W/m²K

SAP Input

Property Details: 07-14-40586 A15 PL1

Address: Flat A15
Located in: England
Region: Thames valley

UPRN:

Date of assessment: 16 April 2015 Date of certificate: 17 April 2015

Assessment type: New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

New dwelling
Unknown

No related party
Indicative Value Low

Dwelling designed to use less than 125 litres per Person per day: True

Property description:

Dwelling type: Flat

Detachment:

Year Completed: 2015

Floor Location: Floor area: Storey height:

Floor 0 123.69 m² 2.78 m

Living area: 56.47 m² (fraction 0.457)

Front of dwelling faces: South West

Opening types:

Name:	Source:	Type:	Glazing:	Argon:	Frame:
Front Door	Manufacturer	Solid			PVC-U
Front Elev	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	Metal
Side Elev	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	Metal
Rear Elev	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	Metal

Name:	Gap:	Frame Fa	actor: g-value:	U-value:	Area:	No. of Openings:
Front Door	mm	0.7	0	1.6	2.12	1
Front Elev	16mm or more	0.8	0.63	1.6	15.8	1
Side Elev	16mm or more	0.8	0.63	1.6	15.25	1
Rear Elev	16mm or more	0.8	0.63	1.6	24.52	1

Name: Front Door	Type-Name:	Location: Walls to Corridor	Orient: South West	Width: 0	Height: 0
Front Elev		Cladding External Wall	South East	0	0
Side Elev		Cladding External Wall	South East	0	0
Rear Elev		Cladding External Wall	North East	0	0

Overshading: Average or unknown

Opaque Elements:

Type: G	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Elements		. 0					• •
Walls to Stairwell	18.65	0	18.65	0.14	0.9	False	N/A
Walls to Corridor	15.46	2.12	13.34	0.14	0.43	False	N/A
Cladding External Wa	II 127.12	55.57	71.55	0.16	0	False	N/A
Roof	123.69	0	123.69	0.13	0		N/A
Expsoed Floor	2.07			0.13			N/A
Internal Elements							
Party Elements							
Party Floor	121.63						N/A

Thermal bridges

SAP Input

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0751

LengthPSI-valueApproved source23.370.5Steel lintel with perforated steel base plateApproved source53.80.05JambApproved source55.140.07Intermediate floor between dwellings

Approved source 58.1 0.04 Flat roof
Approved source 19.42 0.09 Corner (normal)
Approved source 8.32 -0.09 Corner (inverted)

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 4
Number of sides sheltered: 2
Pressure test: 6

Main heating system:

Main heating system: Community heating schemes

Heat source: Community CHP

heat from boilers - mains gas, heat fraction 0.6, efficiency 83.9

Heat source: Community boilers

heat from boilers - mains gas, heat fraction 0.4, efficiency 92

Piping>=1991, pre-insulated, low temp, variable flow

Main heating Control:

Main heating Control: Charging system linked to use of community heating, programmer and TRVs

Control code: 2306

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901

Fuel :heat from boilers - mains gas

No hot water cylinder Solar panel: False

Others:

Electricity tariff: standard tariff
In Smoke Control Area: Unknown

Conservatory: No conservatory

Low energy lights: 100%
Terrain type: Dense urban
EPC language: English
Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 0.44 Tilt of collector: 30°

Overshading: None or very little Collector Orientation: South East

Assess Zero Carbon Home: No

User Details: Aymon Winter STRO014511 **Assessor Name:** Stroma Number: Stroma FSAP 2009 **Software Version: Software Name:** Version: 1.5.0.85 Property Address: 07-14-40586 A15 PL1 Flat A15 Address: 1. Overall dwelling dimensions: Ave Height(m) Area(m²) Volume(m³) Ground floor 123.69 (1a) x (3a) 2.78 (2a) =343.86 Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+....(1n)(4)123.69 Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+....(3n) =343.86 (5) total main Secondary other m³ per hour heating heating x 40 =Number of chimneys (6a) 0 0 x 20 =Number of open flues 0 O O 0 0 (6b) Number of intermittent fans x 10 =(7a) 4 40 x 10 =Number of passive vents (7b) 0 0 x 40 =Number of flueless gas fires (7c)Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = \div (5) = (8) 0.12 If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) (9)O Additional infiltration (10)[(9)-1]x0.1 =0 Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction (11)0 if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12) If no draught lobby, enter 0.05, else enter 0 (13)O Percentage of windows and doors draught stripped (14)0 Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =O (16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)6 If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise (18) = (16)0.42 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered (19)2 $(20) = 1 - [0.075 \times (19)] =$ Shelter factor (20)0.85 $(21) = (18) \times (20) =$ Infiltration rate incorporating shelter factor (21)0.35 Infiltration rate modified for monthly wind speed Feb Sep Jan Mar Apr Mav Jun Jul Aug Oct Nov Dec Monthly average wind speed from Table 7 (22)m =5.1 4.5 4.1 3.9 3.7 3.7 4.2 4.5 4.8 5.1

1.12

1.02

0.98

0.92

0.92

1.05

1.12

1.2

1.27

1.27

Wind Factor $(22a)m = (22)m \div 4$

1.27

1.35

(22a)m

Adjusted infiltration rate (allowing for sh	elter and wind s	speed) = (21a) x	(22a)m					
0.48 0.45 0.45 0.4	0.36 0.34	0.33 0.33	0.37	0.4	0.42	0.45		
Calculate effective air change rate for the If mechanical ventilation:	ne applicable ca	se		•				(oc. \
If mechanical ventilation. If exhaust air heat pump using Appendix N, (23)	2b) = (22a) × Emy (a	aguation (NE)) other	nwico (23h)	- (22a)			0	(23a)
If balanced with heat recovery: efficiency in %	, , , , , ,	. , , , ,	` ,	- (25a)			0	(23b)
	-) -\ (C	20L) [4	(00-)	0	(23c)
a) If balanced mechanical ventilation (24a)m= 0 0 0 0	0 0	ery (MVHR) (24	a)m = (22)	2) + m(d: 0	23b) × [* 0	$\frac{1 - (23c)}{0}$	1 ÷ 100]]	(24a)
` '								(244)
b) If balanced mechanical ventilation (24b)m= 0 0 0 0	o o		$\frac{0)m = (22)}{0}$	(d.) 1 (d.) 1 (d.)	(3D) 0	0	1	(24b)
(', ' ' ' ' ' ' ' ' '			السنا	0			J	(240)
c) If whole house extract ventilation o if $(22b)m < 0.5 \times (23b)$, then $(24c)$	•			5 x (23h)			
(24c)m = 0	0 0	0 0	T 0 T	0	0	0]	(24c)
d) If natural ventilation or whole house			ا ا				J	, ,
if $(22b)m = 1$, then $(24d)m = (22b)$				0.5]				
(24d)m= 0.61 0.6 0.6 0.58	0.57 0.56	0.55 0.55	0.57	0.58	0.59	0.6		(24d)
Effective air change rate - enter (24a)	or (24b) or (24d	c) or (24d) in bo	x (25)	•				
(25)m= 0.61 0.6 0.6 0.58	0.57 0.56	0.55 0.55	0.57	0.58	0.59	0.6		(25)
3. Heat losses and heat loss paramete	ve-		•	1				
ELEMENT Gross Opening		ea U-va	lue	AXU		k-value	ے	A X k
area (m²) m²				(W/k	()	kJ/m²-		kJ/K
Doors	2.12	x 1.6	=	3.392				(26)
Windows Type 1	15.8	x1/[1/(1.6)-	+ 0.04] =	23.76				(27)
Windows Type 2	15.25	x1/[1/(1.6)-	+ 0.04] =	22.93				(27)
Windows Type 3	24.52	x1/[1/(1.6)-	+ 0.04] =	36.87	=			(27)
Floor	2.07	× 0.13		0.27	<u> </u>			(28)
Walls Type1 18.65 0	18.65	x 0.12		2.32	=			(29)
Walls Type2 15.46 2.12	13.34	= =	-	1.76	-		-	(29)
Walls Type3 127.12 55.57		= =	-	11.45	-		╡	(29)
Roof 123.69 0	123.69	= =	-	16.08	╡ ├		╡	(30)
Total area of elements, m ²		= -		10.00				(31)
Party floor	286.99	=			Г			`
* for windows and roof windows, use effective wir	121.63		1/[/1/ ₋ .valu	a)+0 041 a	L aiven in	naragrani		(32a)
** include the areas on both sides of internal walls		ateu using formula	1/[(1/O-value	6)+0.04 j a	s giveri iii	paragrapi	1 3.2	
Fabric heat loss, W/K = S (A x U)		(26)(30)) + (32) =				118.83	(33)
Heat capacity $Cm = S(A \times k)$			((28)	.(30) + (32) + (32a).	(32e) =	8940.909	9 (34)
Thermal mass parameter (TMP = Cm ÷	TFA) in kJ/m²K		Indicat	ive Value:	Low		100	(35)
For design assessments where the details of the can be used instead of a detailed calculation.	construction are not	t known precisely th	e indicative	values of	TMP in Ta	able 1f		
Thermal bridges : S (L x Y) calculated u	sing Appendix k	<					21.56	(36)
if details of thermal bridging are not known (36) =								·
Total fabric heat loss			(33) +	(36) =			140.39	(37)

Ventilati	ion hea	it loss ca	alculated	l monthly	y				(38)m	= 0.33 × (25)m x (5))		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	69.69	68.29	68.29	65.73	64.2	63.49	62.82	62.82	64.57	65.73	66.97	68.29		(38)
Heat tra	ansfer c	oefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	210.08	208.68	208.68	206.12	204.59	203.88	203.21	203.21	204.96	206.12	207.36	208.68		
Heat los	ss para	meter (F	HLP), W/	′m²K						Average = = (39)m ÷	Sum(39) ₁ .	12 /12=	206.3	(39)
(40)m=	1.7	1.69	1.69	1.67	1.65	1.65	1.64	1.64	1.66	1.67	1.68	1.69		
Number	r of day	s in mor	nth (Tab	le 1a)					,	Average =	Sum(40) ₁	12 /12=	1.67	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wat	er heat	ing ener	gy requi	rement:								kWh/ye	ear:	
Assume									/ -			.88		(42)
	A > 13.9 A £ 13.9		+ 1.76 x	[1 - exp	(-0.0003	849 x (TF	FA -13.9))2)] + 0.0	0013 x (ΓFA -13.	.9)			
Annual		•	ater usag	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36		102	2.52		(43)
		-				-	•	to achieve	a water us	se target o	f		l	, ,
not more			-		rater use, i I	hot and co		1	i		1	i	I	
List water	Jan	Feb	Mar	Apr	May	Jun	Jul Table 10 Y	Aug	Sep	Oct	Nov	Dec		
Hot water						·		· <i>′</i>	i		1	i	I	
(44)m=	112.77	108.67	104.57	100.47	96.37	92.27	92.27	96.37	100.47	104.57	108.67	112.77		— ,,,,
Energy co	ontent of	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,r	n x nm x D	OTm / 3600	0 kWh/mor		m(44) ₁₁₂ = ables 1b, 1		1230.21	(44)
(45)m=	167.63	146.61	151.29	131.9	126.56	109.21	101.2	116.13	117.52	136.95	149.5	162.34		
If instanta	aneous w	ater heatii	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46		Γotal = Su	m(45) ₁₁₂ =	=	1616.85	(45)
` '	25.14	21.99	22.69	19.78	18.98	16.38	15.18	17.42	17.63	20.54	22.42	24.35		(46)
Water s	•					(1.14.11							İ	
a) If ma					r is knov	vn (kvvn	/day):					0		(47)
Temper								·				0		(48)
Energy If manual			_	-		s not kno		(47) x (48)) =			0		(49)
Cylinde			•					!			1	10		(50)
If com	munity he	eating and	no tank in	dwelling,	enter 110	litres in bo	x (50)						J	
Otheru	vise if no	stored ho	t water (th	is includes	instantan	eous coml	oi boilers) e	enter '0' in	box (50)					
Hot wat	er stora	age loss	factor fr	om Tabl	e 2 (kW	h/litre/da	ıy)				0.	.02		(51)
Volume	factor	from Tal	ble 2a								1.	.03		(52)
Temper	ature fa	actor fro	m Table	2b							0	0.6		(53)
Energy	lost fro	m water	storage	, kWh/ye	ear			((50) x (51	1) x (52) x	(53) =	1.	.03		(54)
Enter (4	19) or (5	54) in (5	5)								1.	.03		(55)
		loss cal	rulated f	or each	month			((56)m = ((55) × (41)	m				
Water s	torage													
(56)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(56)
(56)m=	32.01	28.92	32.01	30.98	32.01							32.01 om Append	ix H	(56)

Primary circuit loss (annual) from Table 3	(58)
Primary circuit loss calculated for each month $(59)m = (58) \div 365 \times (41)m$ (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)	
(59)m= 30.58 27.62 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58	(59)
Combi loss calculated for each month (61) m = $(60) \div 365 \times (41)$ m	
(61)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(61)
Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (46)m + (57)m + (58)m + (46)m + (58)m + (46)m + (46)m + (58)m + (48)m	9)m + (61)m
(62)m= 230.22 203.15 213.88 192.47 189.15 169.78 163.79 178.72 178.09 199.54 210.07 224.93	(62)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)	
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)	
(63)m= 0 0 0 0 0 0 0 0 0 0 0	(63)
Output from water heater	
(64)m= 230.22 203.15 213.88 192.47 189.15 169.78 163.79 178.72 178.09 199.54 210.07 224.93	
Output from water heater (annual) ₁₁₂	2353.8 (64)
Heat gains from water heating, kWh/month $0.25 \times [0.85 \times (45) \text{m} + (61) \text{m}] + 0.8 \times [(46) \text{m} + (57) \text{m} + (59) \text{m}]$	
(65)m= 105.81 93.98 100.38 92.31 92.15 84.77 83.72 88.68 87.53 95.61 98.16 104.05	(65)
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community hear	ting
5. Internal gains (see Table 5 and 5a):	
Metabolic gains (Table 5), Watts	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
(66)m= 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59 172.59	(66)
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5	
(67)m= 64.62 57.4 46.68 35.34 26.42 22.3 24.1 31.32 42.04 53.38 62.3 66.42	(67)
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5	
(68)m= 432.75 437.24 425.92 401.83 371.42 342.84 323.75 319.26 330.57 354.66 385.07 413.66	(68)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5	
(69)m= 55.14 55.14 55.14 55.14 55.14 55.14 55.14 55.14 55.14 55.14 55.14	(69)
Pumps and fans gains (Table 5a)	
(70)m= 0 0 0 0 0 0 0 0 0 0 0	(70)
Losses e.g. evaporation (negative values) (Table 5)	
(71)m= -115.06 -115.06 -115.06 -115.06 -115.06 -115.06 -115.06 -115.06 -115.06 -115.06 -115.06 -115.06 -115.06	(71)
Water heating gains (Table 5)	
(72)m= 142.22 139.84 134.91 128.21 123.86 117.74 112.53 119.2 121.57 128.51 136.34 139.85	(72)
Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$	
(73)m= 752.25 747.15 720.18 678.05 634.37 595.54 573.04 582.45 606.85 649.22 696.38 732.59	(73)
6. Solar gains:	
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.	
0	Gains
Table 6d m² Table 6a Table 6b Table 6c	(W)
Northeast 0.9x 0.77 x 24.52 x 11.51 x 0.63 x 0.8 =	98.57 (75)
Northeast 0.9x 0.77 x 24.52 x 23.55 x 0.63 x 0.8 =	201.72 (75)

Northeast 0.9x		1		1		1		– r		_		7(75)
Northeast 0.9x	0.77	X	24.52	X	41.13	X	0.63	× [0.8	=	352.22	(75)
<u> </u>	0.77	X	24.52	X	67.8	X	0.63		0.8	=	580.63	(75)
Northeast 0.9x	0.77	X	24.52	X	89.77	X	0.63	_	0.8	=	768.77	(75)
Northeast 0.9x	0.77	X	24.52	X	97.5	X	0.63	× [0.8	=	835.02	(75)
Northeast _{0.9x}	0.77	X	24.52	X	92.98	X	0.63	_	0.8	=	796.29	(75)
Northeast _{0.9x}	0.77	X	24.52	X	75.42	X	0.63	x [0.8	=	645.89	(75)
Northeast 0.9x	0.77	X	24.52	X	51.24	X	0.63	×	0.8	=	438.87	(75)
Northeast _{0.9x}	0.77	X	24.52	X	29.6	X	0.63	x [0.8	=	253.49	(75)
Northeast _{0.9x}	0.77	X	24.52	X	14.52	X	0.63	x	0.8	=	124.39	(75)
Northeast _{0.9x}	0.77	X	24.52	X	9.36	X	0.63	X	0.8	=	80.17	(75)
Southeast 0.9x	0.77	X	15.8	x	37.39	x	0.63	x	0.8	=	206.32	(77)
Southeast _{0.9x}	0.77	X	15.25	X	37.39	X	0.63	x [0.8	=	199.14	(77)
Southeast _{0.9x}	0.77	X	15.8	x	63.74	x	0.63	x [0.8	=	351.72	(77)
Southeast 0.9x	0.77	X	15.25	X	63.74	X	0.63	x [0.8	=	339.48	(77)
Southeast 0.9x	0.77	X	15.8	X	84.22	X	0.63	x	0.8	=	464.75	(77)
Southeast 0.9x	0.77	x	15.25	x	84.22	x	0.63	x	0.8	=	448.57	(77)
Southeast 0.9x	0.77	X	15.8	x	103.49	x	0.63	x	0.8	=	571.1	(77)
Southeast 0.9x	0.77	X	15.25	x	103.49	x	0.63	= x	0.8	=	551.22	(77)
Southeast 0.9x	0.77	x	15.8	x	113.34	x	0.63	= x	0.8	=	625.45	(77)
Southeast 0.9x	0.77	x	15.25	x	113.34	x	0.63	x	0.8	=	603.68	(77)
Southeast 0.9x	0.77	x	15.8	x	115.04	x	0.63	x	0.8	=	634.87	(77)
Southeast _{0.9x}	0.77	x	15.25	x	115.04	x	0.63	= x [0.8	=	612.77	(77)
Southeast 0.9x	0.77	x	15.8	x	112.79	x	0.63	x	0.8	=	622.44	(77)
Southeast 0.9x	0.77	x	15.25	x	112.79	x	0.63	= x	0.8	=	600.77	(77)
Southeast 0.9x	0.77	x	15.8	x	105.34	x	0.63	_ x [0.8	=	581.32	(77)
Southeast 0.9x	0.77	x	15.25	x	105.34	x	0.63	x	0.8	=	561.09	(77)
Southeast 0.9x	0.77	X	15.8	x	92.9	x	0.63	x	0.8	=	512.65	(77)
Southeast 0.9x	0.77	x	15.25	x	92.9	x	0.63	= x [0.8	=	494.81	(77)
Southeast 0.9x	0.77	X	15.8	x	72.36	x	0.63	_ x	0.8	<u> </u>	399.33	(77)
Southeast 0.9x	0.77	X	15.25	x	72.36	x	0.63	= x	0.8	<u> </u>	385.43	(77)
Southeast 0.9x	0.77	x	15.8	x	44.83	x	0.63	= x [0.8	=	247.37	(77)
Southeast 0.9x	0.77	x	15.25	x	44.83	x	0.63	= x	0.8	=	238.76	(77)
Southeast 0.9x	0.77	x	15.8	x	31.95	x	0.63	_ x [0.8	=	176.31	(77)
Southeast 0.9x	0.77	x	15.25	x	31.95	x	0.63	= x	0.8	=	170.18	(77)
_		•										
Solar gains in y	vatts, calcul	ated	for each mon	th		(83)m	n = Sum(74)m .	(82)m				
(83)m= 504.04	892.93 126	5.53	1702.96 1997.8	9 20	082.66 2019.49	178	8.3 1446.33	1038.20	6 610.52	426.66		(83)
Total gains – in	ternal and s	solar	(84)m = (73) n	า + (8	83)m , watts						ı	
(84)m= 1256.29	1640.07 198	5.71	2381.01 2632.2	6 2	678.2 2592.53	2370).74 2053.18	1687.4	7 1306.9	1159.25		(84)
7. Mean interr	nal temperat	ture (heating seaso	n)								
Temperature of	during heati	ng pe	eriods in the li	ving	area from Tab	ole 9	, Th1 (°C)				21	(85)
Utilisation fact	or for gains	for li	ving area, h1,	m (s	ee Table 9a)							_
Jan	Feb M	1ar	Apr Ma	У	Jun Jul	Α	ug Sep	Oct	Nov	Dec		
												

(86)m=	0.92	0.87	0.8	0.7	0.56	0.43	0.3	0.33	0.54	0.75	0.89	0.93		(86)
Mear	interna	l temper	ature in	living ar	ea T1 (fo	ollow ste	ps 3 to 7	7 in Tabl	e 9c)					
(87)m=	18.2	18.67	19.32	19.93	20.49	20.8	20.94	20.93	20.67	19.97	18.87	18.22		(87)
Temp	erature	during h	neating p	eriods ir	n rest of	dwelling	from Ta	able 9, T	h2 (°C)					
(88)m=	19.55	19.55	19.55	19.57	19.58	19.58	19.59	19.59	19.58	19.57	19.56	19.55		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	ee Table	9a)	-	-				
(89)m=	0.91	0.85	0.77	0.66	0.51	0.35	0.2	0.22	0.45	0.7	0.87	0.91		(89)
Mear	interna	l temper	ature in	the rest	of dwelli	ing T2 (f	ollow ste	eps 3 to	7 in Tabl	le 9c)			•	
(90)m=	15.97	16.64	17.54	18.37	19.07	19.43	19.56	19.55	19.3	18.46	16.94	16.01		(90)
			!	!		!		•	1	fLA = Livin	g area ÷ (4	4) =	0.46	(91)
Mear	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	.A) × T2			!		
(92)m=	16.99	17.57	18.36	19.08	19.72	20.06	20.19	20.18	19.93	19.15	17.82	17.02		(92)
Apply	adjustn	nent to t	he mear	interna	l temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	16.99	17.57	18.36	19.08	19.72	20.06	20.19	20.18	19.93	19.15	17.82	17.02		(93)
			uirement											
				mperatu using Ta		ned at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
uie u	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa		<u> </u>	ains, hm	<u> </u>	Iviay	l our	<u> </u>	_ //ug	ОСР		1101	DCO		
(94)m=	0.88	0.82	0.74	0.64	0.51	0.38	0.25	0.27	0.47	0.69	0.84	0.88		(94)
Usefu	ıl gains,	hmGm	, W = (9	4)m x (8	4)m								l	
(95)m=	1099.74	1340.7	1469.9	1527.94	1346.39	1004.77	639.86	633.56	974.53	1156.28	1091.88	1025		(95)
Mont	hly aver	age exte	rnal tem	perature	from Ta	able 8	i	,	r	i				
(96)m=	4.5	5	6.8	8.7	11.7	14.6	16.9	16.9	14.3	10.8	7	4.9		(96)
		1	1				-`-'-	x [(93)m	<u> </u>	r			I	(07)
(97)m=		2623.34				1112.33		666.39	<u> </u>	1720.87		2528.77		(97)
	e heatin 1133.67		ement fo	r each n	218.9	Wh/mon	$\frac{10 - 0.02}{0}$	24 x [(97 0)m – (95 0)m] x (4 ⁻¹ 420.06	1)m 829.87	1118.81		
(98)m=	1133.07	001.94	700.74	440.01	210.9					(kWh/year			5724.59	(98)
0				1.14/1.//	2/			1018	ii pei yeai	(KVVII/yeai) = Sum(9	0)15,912 =		〓
•		•		kWh/m²	•								46.28	(99)
	<u> </u>	•		· ·	Ŭ	scheme								
								ting prov (Table 1			unity sch	neme.	0	(301)
	•			•	• •	1 – (30		(.,				1	(302)
	•			•	•	•	•	allows for	CUD and	un to four	other heat	cources: t		(002)
	-							See Appe		ир то тоит с	Jillel Heat	sources, u	ile iallei	
Fraction	on of hea	at from C	Commun	ity CHP									0.6	(303a)
Fraction	on of cor	nmunity	heat fro	m heat s	source 2								0.4	(303b)
Fraction	on of tota	al space	heat fro	m Comn	nunity C	HP				(3	02) x (303	a) =	0.6	(304a)
Fraction	on of tota	al space	heat fro	m comm	nunity he	at sourc	e 2			(3	02) x (303	b) =	0.4	(304b)
Factor	for cont	rol and	charging	method	l (Table	4c(3)) fo	r comm	unity hea	ating sys	tem			1	(305)

Distribution loss factor (Table 12c) for comm	unity heating system		1.05	(306)
Space heating	, 3 ,		kWh/year	_
Annual space heating requirement			5724.59	
Space heat from Community CHP		(98) x (304a) x (305) x (306) =	3606.49	(307a)
Space heat from heat source 2		(98) x (304b) x (305) x (306) =	2404.33	(307b)
Efficiency of secondary/supplementary heati	ng system in % (from Tal	ble 4a or Appendix E)	0	(308
Space heating requirement from secondary/s	supplementary system	(98) x (301) x 100 ÷ (308) =	0	(309)
Water heating Annual water heating requirement			2353.8	7
If DHW from community scheme: Water heat from Community CHP		(64) x (303a) x (305) x (306) =	1482.89	(310a)
Water heat from heat source 2		(64) x (303b) x (305) x (306) =	988.59	(310b)
Electricity used for heat distribution	0	.01 × [(307a)(307e) + (310a)(310e)] =	84.82	(313)
Cooling System Energy Efficiency Ratio			0	(314)
Space cooling (if there is a fixed cooling syst	em, if not enter 0)	= (107) ÷ (314) =	0	(315)
Electricity for pumps and fans within dwelling mechanical ventilation - balanced, extract or	• •	de	0	(330a)
warm air heating system fans			0	(330b)
pump for solar water heating			0	(330g)
Total electricity for the above, kWh/year		=(330a) + (330b) + (330g) =	0	(331)
Energy for lighting (calculated in Appendix L)		456.49	(332)
Electricity generated by PVs (Appendix M) (r	negative quantity)		-361.5	(333)
Electricity generated by wind turbine (Appen	dix M) (negative quantity)	0	(334)
10b. Fuel costs – Community heating scher	ne			
	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year	
Space heating from CHP	(307a) x	2.65 x 0.01 =	95.57	(340a)
Space heating from heat source 2	(307b) x	3.78 × 0.01 =	90.88	(340b)
Water heating from CHP	(310a) x	2.65 x 0.01 =	39.3	(342a)
Water heating from heat source 2	(310b) x	3.78 x 0.01 =	37.37	(342b)
		Fuel Price		_
Pumps and fans	(331)	11.46 x 0.01 =		(349)
Energy for lighting	(332)	11.46 x 0.01 =	52.31	(350)
Additional standing charges (Table 12)			106	(351)
Energy saving/generation technologies Item 1		11.46 × 0.01 =	-41.43	(352)

= (340a)...(342e) + (345)...(354) =

Total energy cost

380.01

(355)

11b. SAP rating - Community heat	ting scheme				
Energy cost deflator (Table 12)				0.47	(356)
Energy cost factor (ECF)	[(355) x (356)] ÷ [(4) + 45.0] =			1.06	(357)
SAP rating (section12)				85.23	(358)
12b. CO2 Emissions – Community	heating scheme				
Electrical efficiency of CHP unit				25.58	(361)
Heat efficiency of CHP unit				58.32	(362)
		Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year	
Space heating from CHP)	(307a) × 100 ÷ (362) =	6183.89 ×	0.2	1224.41	(363)
less credit emissions for electricity	$-(307a) \times (361) \div (362) =$	1581.79 ×	0.53	-836.77	(364)
Water heated by CHP	(310a) × 100 ÷ (362) =	2542.65 X	0.2	503.44	(365)
less credit emissions for electricity	$-(310a) \times (361) \div (362) =$	650.39 ×	0.53	-344.06	(366)
Efficiency of heat source 2 (%)	If there is CHP using t	wo fuels repeat (363) to	(366) for the second fue	92	(367b)
CO2 associated with heat source 2	[(307b)+(3	10b)] x 100 ÷ (367b) x	0.2	730.22	(368)
Electrical energy for heat distribution	on [(3	313) x	0.52	43.85	(372)
Total CO2 associated with commun	nity systems (3	63)(366) + (368)(372	2) =	1321.1	(373)
CO2 associated with space heating	g (secondary) (3	09) x	0 =	0	(374)
CO2 associated with water from im	mersion heater or instantaneo	us heater (312) x	0.2	0	(375)
Total CO2 associated with space a	nd water heating (3	73) + (374) + (375) =		1321.1	(376)
CO2 associated with electricity for p	oumps and fans within dwelling	g (331)) x	0.52	0	(378)
CO2 associated with electricity for I	ighting (3	32))) x	0.52	236.01	(379)
Energy saving/generation technologitem 1	gies (333) to (334) as applicab	ole	0.53 x 0.01 =	-191.24	(380)
Total CO2, kg/year	sum of (376)(382) =			1365.87	(383)
Dwelling CO2 Emission Rat	te $(383) \div (4) =$			11.04	(384)
El rating (section 14)				89.15	(385)
13b. Primary Energy – Community Electrical efficiency of CHP unit	heating scheme			05.50	7(264)
Heat efficiency of CHP unit				25.58	(361) (362)
rieat emolency of orn unit		Energy	Primary	58.32 P.Energy	(302)
		kWh/year	factor	kWh/year	_
Space heating from CHP)	$(307a) \times 100 \div (362) =$	6183.89 ×	1.02	6307.57	(363)
less credit emissions for electricity	$-(307a) \times (361) \div (362) =$	1581.79 X	2.92	-4618.84	(364)
Water heated by CHP	(310a) × 100 ÷ (362) =	2542.65 X	1.02	2593.5	(365)
less credit emissions for electricity	$-(310a) \times (361) \div (362) =$	650.39 ×	2.92	-1899.14	(366)
Efficiency of heat source 2 (%)	If there is CHP using t	wo fuels repeat (363) to	(366) for the second fue	92	(367b)

Energy associated with heat source 2	[(307b)+(310b)] x 100 ÷ (367b) x	1.02	=	3761.72	(368)
Electrical energy for heat distribution	[(313) x		=	247.68	(372)
Total Energy associated with community systems	(363)(366) + (368)(372))	=	6392.49	(373)
if it is negative set (373) to zero (unless specified other	herwise, see C7 in Appendix C)		6392.49	(373)
Energy associated with space heating (secondary)	(309) x	0	=	0	(374)
Energy associated with water from immersion heater of	or instantaneous heater(312) x	1.02	=	0	(375)
Total Energy associated with space and water heating	(373) + (374) + (375) =			6392.49	(376)
Energy associated with space cooling	(315) x	2.92	=	0	(377)
Energy associated with electricity for pumps and fans	within dwelling (331)) x	2.92	=	0	(378)
Energy associated with electricity for lighting	(332))) x	2.92	=	1332.96	(379)
Energy saving/generation technologies Item 1		2.92 x 0.0	01 =	-1055.59	(380)
Total Primary Energy, kWh/year	m of (376)(382) =			6669.86	(383)

SAP 2009 Overheating Assessment

Calculated by Stroma FSAP 2009 program, produced and printed on 17 April 2015

Property Details: 07-14-40586 A15 PL1

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: Yes Number of storeys: 1

Front of dwelling faces: South West

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Low

Night ventilation: False

Blinds, curtains, shutters: Light-coloured curtain or roller blind

Ventilation rate during hot weather (ach):6 (Windows fully open)

Overheating Details:

Summer ventilation heat loss coefficient: 680.84 (P1)

Transmission heat loss coefficient: 140.4

Summer heat loss coefficient: 821.23 (P2)

Overhangs:

Orientation:	Ratio:	Z_overhangs:
South East (Front Elev)	0	1
South East (Side Elev)	0	1
North East (Rear Elev)	0	1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
South East (Front Elev)	0.6	0.9	1	0.54	(P8)
South East (Side Elev)	0.6	0.9	1	0.54	(P8)
North East (Rear Elev)	0.6	0.9	1	0.54	(P8)

Solar gains:

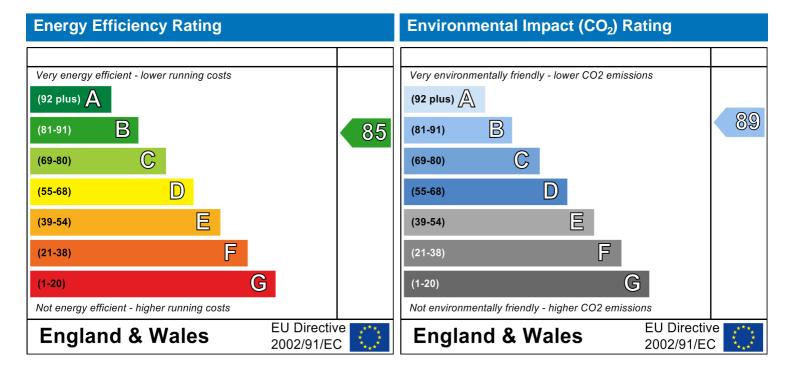
Orientation	Area	Flux	\mathbf{g}_{-}	FF	Shading	Gains
South East (Front Elev) 0	.9 x 15.8	116.76	0.63	0.8	0.54	451.88
South East (Side Elev) 0	.9 x 15.25	116.76	0.63	0.8	0.54	436.15
North East (Rear Elev) 0	.9 x 24.52	98.96	0.63	0.8	0.54	594.34
					Total	1482.37 (P3/P4)

Internal gains:

	June	July	August
Internal gains	595.54	573.04	582.45
Total summer gains	2148	2055.4	1914.75 (P5)
Summer gain/loss ratio	2.62	2.5	2.33 (P6)
Mean summer external temperature (Thames valley)	15.4	17.8	17.8
Thermal mass temperature increment	1.3	1.3	1.3
Threshold temperature	19.32	21.6	21.43 (P7)
Likelihood of high internal temperature	Not significant	Slight	Slight

Assessment of likelihood of high internal temperature: Slight

Predicted Energy Assessment



Flat A15

Dwelling type: Top floor Flat
Date of assessment: 16 April 2015
Produced by: Aymon Winter
Total floor area: 123.69 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

Code for Sustainable Homes Report

Assessor and House Details

Assessor Name: Aymon Winter Assessor Number: STRO014511

Property Address: Flat A15

Builing regulation assessment

kg/m²/year

TER 18.49
DER 11.62

The following code calculations are taken from the Code for Sustainable Homes Technical Guide (Nov 10)

Ene 1 Assessment - Dwelling Emission Rate

Total Energy Type CO2 Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2009 DER Worksheet		11.62	(ZC1)
TER		18.49	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		11.62	
% improvement DER/TER	37.2		

Total Energy Type CO2 Emissions for Codes Levels 6

	kg/m²/year	
DER accounting for SAP Section 16 allowances	11.62	(ZC1)
CO2 emissions from appliances, equation (L14)	13.84	(ZC2)
CO2 emissions from cooking, equation (L16)	1.52	(ZC3)
Net CO2 emissions	27	(ZC8)

Result:

Credits awarded for Ene 1 = 4.1

Code Level = 4

Ene 2 - Fabric energy Efficiency

Fabric energy Efficiency: 62.61 Credits awarded for Ene 2 = 0

Ene 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year
Standard Case CO2 emissions		34.54
Standard DER		19.18
Actual Case CO2 emissions		26.98
Actual DER		11.62

Reduction in CO2 emissions 21.89

Credits awarded for Ene 7 = 2

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

- · Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.
- · Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified
- · Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.
- · All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.