Regulations Compliance Report

Approved Document L1A 2010 edition assessed by Stroma FSAP 2009 program, Version: 1.5.0.85 Printed on 17 April 2015 at 14:40:27

Project Information:

Assessed By: Aymon Winter (STRO014511) Building Type: Flat

Dwelling Details:

NEW DWELLING DESIGN STAGE

Site Reference: Lancaster Street Plot Reference: 07-14-40586 B11 PL1

Address: Flat B11

Client Details:

Name: H G Construction Ltd - Hitchin Address: 4 Hunting Gate, Hitchin, SG40TJ

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1 TER and DER

Fuel for main heating system: Mains gas (c), Mains gas (c)

Fuel factor: 1.00 (mains gas (c), mains gas (c))

Target Carbon Dioxide Emission Rate (TER) 17.57 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 12.54 kg/m² **OK**

 гар	J-1	/a	lut	3 5

Element	Average	Highest	
External wall	0.14 (max. 0.30)	0.16 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.13 (max. 0.25)	0.13 (max. 0.70)	OK
Roof	0.13 (max. 0.20)	0.13 (max. 0.35)	OK
Openings	1.60 (max. 2.00)	1.60 (max. 3.30)	OK
permeability			

3 Air permeability

Air permeability at 50 pascals 6.00
Maximum 10.0 OK

4 Heating efficiency

Main Heating system: Community heating schemes - mains gas

Secondary heating system: None

5 Cylinder insulation

Hot water Storage: No cylinder

6 Controls

Space heating controls Charging system linked to use of community heating, programmer and TRVs **OK**

Hot water controls: No cylinder

7 Low energy lights

Percentage of fixed lights with low-energy fittings 100.0%

Minimum 75.0% OK

8 Mechanical ventilation

Not applicable

Regulations Compliance Report

OK

9 Summertime temperature

Overheating risk (Thames valley): Slight

Based on:

Overshading: Average or unknown

Windows facing: North East 17.77m², Overhang twice as wide as window, ratio NaN

Ventilation rate: 4.00

Blinds/curtains: Light-coloured curtain or roller blind

shutter closed 100% of daylight hours

10 Key features

External Walls U-value 0.16 W/m²K
External Walls U-value 0.13 W/m²K
External Walls U-value 0.12 W/m²K
Floors U-value 0.13 W/m²K

Community heating, heat from boilers - mains gas

Photovaltaic array

SAP Input

Flat B11 Address: Located in: England Region: Thames valley

UPRN:

Date of assessment: 16 April 2015 Date of certificate: 17 April 2015

Assessment type: New dwelling design stage

New dwelling Transaction type: Tenure type: Unknown Related party disclosure: No related party Indicative Value Low Thermal Mass Parameter:

Dwelling designed to use less than 125 litres per Person per day: True

Flat Dwelling type:

Detachment:

2015 Year Completed:

Floor Location: Floor area: Storey height:

109.76 m² Floor 0 2.56 m

29.8 m² (fraction 0.272) Living area:

South West Front of dwelling faces:

Name: Source: Glazing: Argon: Frame: Type: Front Door Manufacturer Solid PVC-U

Rear Elev Manufacturer Windows Metal low-E, En = 0.05, soft coat Yes

Frame Factor: g-value: Name: Gap: **U-value:** Area: No. of Openings: Front Door 0.7 0 1.6 2.12 mm 1 Rear Elev 17.77 16mm or more 8.0 0.63 1.6 1

Name: Location: Orient: Width: Type-Name: Height:

Front Door Walls to Corridor South West Λ 0 Block External Wall Rear Elev 0 0 North East

Average or unknown Overshading:

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Element	<u>S</u>						
Block External Wal	37.08	17.77	19.31	0.16	0	False	N/A
Walls to Corridor	27.69	2.12	25.57	0.14	0.43	False	N/A
Walls to Stairwell	9.69	0	9.69	0.14	0.9	False	N/A
Roof to terrace	59.83	0	59.83	0.13	0		N/A
Exposed Floor	105.8			0.13			N/A
Internal Element	<u>S</u>						
Party Elements							
Party Walls	43.18						N/A
Party Ceiling	49.93						N/A
Party Ceiling	3.95						N/A

Thermal bridges: No information on thermal bridging (y=0.15) (y =0.15)

Yes (As designed) Pressure test:

SAP Input

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 4
Number of sides sheltered: 2
Pressure test: 6

Main heating system

Main heating system: Community heating schemes

Heat source: Community CHP

heat from boilers - mains gas, heat fraction 0.6, efficiency 83.9

Heat source: Community boilers

heat from boilers – mains gas, heat fraction 0.4, efficiency 92

Piping>=1991, pre-insulated, low temp, variable flow

Main heating Control:

Main heating Control: Charging system linked to use of community heating, programmer and TRVs

Control code: 2306

Secondary heating system:

Secondary heating system: None

Water heating:

Water heating: From main heating system

Water code: 901

Fuel :heat from boilers - mains gas

No hot water cylinder Solar panel: False

Others:

Electricity tariff: standard tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%
Terrain type: Dense urban
EPC language: English
Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 0.24 Tilt of collector: 30°

Overshading: None or very little Collector Orientation: South East

Assess Zero Carbon Home: No

User Details: Aymon Winter STRO014511 **Assessor Name:** Stroma Number: Stroma FSAP 2009 **Software Version: Software Name:** Version: 1.5.0.85 Property Address: 07-14-40586 B11 PL1 Flat B11 Address: 1. Overall dwelling dimensions: Ave Height(m) Area(m²) Volume(m³) Ground floor 109.76 (1a) x (3a) 2.56 (2a) =280.99 Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+....(1n)(4)109.76 Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+....(3n) =280.99 (5) total main Secondary other m³ per hour heating heating x 40 =Number of chimneys (6a) 0 0 x 20 =Number of open flues 0 O O 0 0 (6b) Number of intermittent fans x 10 =(7a) 4 40 x 10 =Number of passive vents (7b) 0 0 x 40 =Number of flueless gas fires (7c)Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = \div (5) = (8) 0.14 If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) (9)O Additional infiltration (10)[(9)-1]x0.1 =0 Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction (11)0 if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12) If no draught lobby, enter 0.05, else enter 0 (13)0 Percentage of windows and doors draught stripped (14)0 Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =O (16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)6 If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise (18) = (16)0.44 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered (19)2 $(20) = 1 - [0.075 \times (19)] =$ Shelter factor (20)0.85 $(21) = (18) \times (20) =$ Infiltration rate incorporating shelter factor (21)0.38 Infiltration rate modified for monthly wind speed Feb Sep Jan Mar Apr Mav Jun Jul Aug Oct Nov Dec Monthly average wind speed from Table 7 (22)m =5.1 4.5 4.1 3.9 3.7 3.7 4.2 4.5 4.8 5.1

1.12

1.02

0.98

0.92

0.92

1.05

1.12

1.2

1.27

1.27

Wind Factor $(22a)m = (22)m \div 4$

1.27

1.35

(22a)m

Adjusted infiltration rate (allo	wing for shelter a	and wind s	peed) =	(21a) x	(22a)m						
0.51 0.48 0.48	0.42 0.39	0.37	0.35	0.35	0.39	0.42	0.45	0.48]		
Calculate effective air chang	e rate for the app	licable ca	se	<u> </u>		•	<u> </u>		<u>, </u>		_
If mechanical ventilation:		O-)		.IT\\		\ (00-\				0	(23a)
If exhaust air heat pump using A	. , , ,	, ,	. ,	,, .	`)) = (23a)				0	(23b)
If balanced with heat recovery: e										0	(23c)
a) If balanced mechanical		1	- ` ` 	- 		, 		1 ` `) ÷ 100] 1		(0.4=)
(24a)m = 0 0 0	0 0	0	0	0	0	0	0	0]		(24a)
b) If balanced mechanical		_	, <u> </u>	. ´` 1	, ,	, `			1		(0.41-)
(24b)m= 0 0 0	0 0	0	0	0	0	0	0	0]		(24b)
c) If whole house extract v if (22b)m < 0.5 × (23b)	•	•				5 v (22h	.)				
(24c)m =	$\frac{1}{0}$		0	0	0	0	0	0	1		(24c)
d) If natural ventilation or v									j		(= .0)
if (22b)m = 1, then (24						0.5]					
(24d)m= 0.63 0.61 0.61	0.59 0.57	0.57	0.56	0.56	0.58	0.59	0.6	0.61			(24d)
Effective air change rate -	enter (24a) or (24	4b) or (24d	c) or (24	d) in box	(25)	-			-		
(25)m= 0.63 0.61 0.61	0.59 0.57	0.57	0.56	0.56	0.58	0.59	0.6	0.61			(25)
3. Heat losses and heat los	s parameter:								_		
ELEMENT Gross	Openings	Net Ar	ea	U-valu	ıe	AXU		k-valu	Э	АХ	(k
area (m²)	m²	A ,n	n²	W/m2	K	(W/I	K)	kJ/m²•	K	kJ/l	K
Doors		2.12	x	1.6	=	3.392					(26)
Doors Windows		2.12 17.77		1.6	!	3.392 26.72					(26) (27)
			x1		!						` '
Windows	17.77	17.77	x1.	/[1/(1.6)+	0.04] =	26.72					(27)
Windows	17.77	17.77	x10	/[1/(1.6)+ 0.13	0.04] =	26.72 13.75					(27)
Windows Floor Walls Type1 37.08		17.77 105.8 19.31	x10	0.13 0.16	0.04] =	26.72 13.75 3.09					(27) (28) (29)
Windows Floor Walls Type1 37.08 Walls Type2 27.69	2.12	17.77 105.8 19.31 25.57	x1. x x x x x x x x x x x x x x x x x x x	0.13 0.16 0.13	0.04] =	26.72 13.75 3.09 3.38					(27) (28) (29) (29)
Windows Floor Walls Type1 37.08 Walls Type2 27.69 Walls Type3 9.69	2.12	17.77 105.8 19.31 25.57 9.69	x1. 3	/[1/(1.6)+	0.04] = = = =	26.72 13.75 3.09 3.38 1.2					(27) (28) (29) (29) (29)
Windows Floor Walls Type1 37.08 Walls Type2 27.69 Walls Type3 9.69 Roof 59.83	2.12	17.77 105.8 19.31 25.57 9.69 59.83	x1, x1, x x x x x x x x x x 9	/[1/(1.6)+	0.04] = = = =	26.72 13.75 3.09 3.38 1.2					(27) (28) (29) (29) (29) (29) (30)
Windows Floor Walls Type1 37.08 Walls Type2 27.69 Walls Type3 9.69 Roof 59.83 Total area of elements, m²	2.12	17.77 105.8 19.31 25.57 9.69 59.83	x1, x1, x x x x x x x x x x 9	0.13 0.16 0.13 0.12 0.13	0.04] = = = = =	26.72 13.75 3.09 3.38 1.2 7.78					(27) (28) (29) (29) (29) (30) (31)
Windows Floor Walls Type1 37.08 Walls Type2 27.69 Walls Type3 9.69 Roof 59.83 Total area of elements, m² Party wall	2.12	17.77 105.8 19.31 25.57 9.69 59.83 240.09	x1. 3	0.13 0.16 0.13 0.12 0.13	0.04] = = = = =	26.72 13.75 3.09 3.38 1.2 7.78					(27) (28) (29) (29) (29) (30) (31) (32)
Windows Floor Walls Type1 37.08 Walls Type2 27.69 Walls Type3 9.69 Roof 59.83 Total area of elements, m² Party wall Party floor	2.12 0 0	17.77 105.8 19.31 25.57 9.69 59.83 240.09 43.18 3.95 49.93	x1, x1, x x x x x x x x x x x x x x x x	/[1/(1.6)+	0.04] = = = = =	26.72 13.75 3.09 3.38 1.2 7.78] [paragrapi			(27) (28) (29) (29) (29) (30) (31) (32) (32a)
Windows Floor Walls Type1 37.08 Walls Type2 27.69 Walls Type3 9.69 Roof 59.83 Total area of elements, m² Party wall Party floor Party ceiling * for windows and roof windows, us	2.12 0 0 0 f internal walls and page	17.77 105.8 19.31 25.57 9.69 59.83 240.09 43.18 3.95 49.93	x1 x x x x x x x x x x x x x x x x x x x	/[1/(1.6)+	0.04] = = = = = = = =	26.72 13.75 3.09 3.38 1.2 7.78] [paragrapi		Ð.32	(27) (28) (29) (29) (29) (30) (31) (32) (32a)
Windows Floor Walls Type1 37.08 Walls Type2 27.69 Walls Type3 9.69 Roof 59.83 Total area of elements, m² Party wall Party floor Party ceiling * for windows and roof windows, us ** include the areas on both sides of	2.12 0 0 c effective window U-f internal walls and part x U)	17.77 105.8 19.31 25.57 9.69 59.83 240.09 43.18 3.95 49.93	x1 x x x x x x x x x x x x x x x x x x x	0.13 0.16 0.13 0.12 0.13	0.04] = = = = = = = = = =	26.72 13.75 3.09 3.38 1.2 7.78			59	9.32	(27) (28) (29) (29) (29) (30) (31) (32) (32a) (32b)
Windows Floor Walls Type1 37.08 Walls Type2 27.69 Walls Type3 9.69 Roof 59.83 Total area of elements, m² Party wall Party floor Party ceiling * for windows and roof windows, us ** include the areas on both sides of Fabric heat loss, W/K = S (A)	2.12 0 0 e effective window U-f internal walls and part X U)	17.77 105.8 19.31 25.57 9.69 59.83 240.09 43.18 3.95 49.93 evalue calcularitions	x1 x x x x x x x y x x x x x x x x x x x	0.13 0.16 0.13 0.12 0.13	0.04] =	26.72 13.75 3.09 3.38 1.2 7.78	2) + (32a).		9527		(27) (28) (29) (29) (29) (30) (31) (32) (32a) (32b)
Windows Floor Walls Type1 37.08 Walls Type2 27.69 Walls Type3 9.69 Roof 59.83 Total area of elements, m² Party wall Party floor Party ceiling * for windows and roof windows, us ** include the areas on both sides of Fabric heat loss, W/K = S (A Heat capacity Cm = S(A x k)	2.12 0 0 0 the effective window U-finternal walls and part x U) MP = Cm ÷ TFA) details of the constru	17.77 105.8 19.31 25.57 9.69 59.83 240.09 43.18 3.95 49.93 evalue calcularatitions	x1 x x x x x x x x x x x x x x x x x x x	0.13 0.16 0.13 0.12 0.13 0.10 0.13 0.10 0.13	0.04] =	26.72 13.75 3.09 3.38 1.2 7.78 0	2) + (32a). : Low	(32e) =	9527	7.6702	(27) (28) (29) (29) (29) (30) (31) (32) (32a) (32b) (33) (34)
Windows Floor Walls Type1 37.08 Walls Type2 27.69 Walls Type3 9.69 Roof 59.83 Total area of elements, m² Party wall Party floor Party ceiling * for windows and roof windows, us *** include the areas on both sides of Fabric heat loss, W/K = S (A Heat capacity Cm = S(A x k Thermal mass parameter (The For design assessments where the	2.12 0 0 0 x U) MP = Cm ÷ TFA) details of the constru	17.77 105.8 19.31 25.57 9.69 59.83 240.09 43.18 3.95 49.93 evalue calcularitions	x1 x x x x x x x y x x x y x x x y x x y x x y x x y x x y x y x x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y y x y y x y y x y y x y y x y y x y y x y x y y x y x y y x x y x x y x x y x x x y x x x x y x x x x x x y x	0.13 0.16 0.13 0.12 0.13 0.10 0.13 0.10 0.13	0.04] =	26.72 13.75 3.09 3.38 1.2 7.78 0	2) + (32a). : Low	(32e) =	9527	7.6702	(27) (28) (29) (29) (29) (30) (31) (32) (32a) (32b) (33) (34)
Windows Floor Walls Type1 37.08 Walls Type2 27.69 Walls Type3 9.69 Roof 59.83 Total area of elements, m² Party wall Party floor Party ceiling * for windows and roof windows, us ** include the areas on both sides of Fabric heat loss, W/K = S (A Heat capacity Cm = S(A x k Thermal mass parameter (Till For design assessments where the can be used instead of a detailed can	2.12 0 0 0 where effective window U-finternal walls and particulation. alculated using A alculated using A	17.77 105.8 19.31 25.57 9.69 59.83 240.09 43.18 3.95 49.93 evalue calculations in kJ/m²K ction are not	x1 x x x x x x x y x x x y x x x y x x y x x y x x y x x y x y x x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y y x y y x y y x y y x y y x y y x y y x y x y y x y x y y x x y x x y x x y x x x y x x x x y x x x x x x y x	0.13 0.16 0.13 0.12 0.13 0.10 0.13 0.10 0.13	0.04] =	26.72 13.75 3.09 3.38 1.2 7.78 0	2) + (32a). : Low	(32e) =	9527	7.6702 00	(27) (28) (29) (29) (29) (30) (31) (32) (32a) (32b) (33) (34) (35)

Ventila	ition hea	at loss ca	alculated	l monthl	V				(38)m	= 0.33 × (25)m x (5))		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	58.31	57.02	57.02	54.66	53.25	52.59	51.97	51.97	53.59	54.66	55.8	57.02		(38)
Heat tr	ansfer c	coefficier	nt, W/K		-	-	-		(39)m	= (37) + (3	38)m	-	•	
(39)m=	153.64	152.35	152.35	149.99	148.58	147.92	147.3	147.3	148.92	149.99	151.13	152.35		
Heat le	see para	meter (F	11 D) \\\\	m²k′						Average = = (39)m ÷		12 /12=	150.15	(39)
(40)m=	1.4	1.39	1.39	1.37	1.35	1.35	1.34	1.34	1.36	1.37	1.38	1.39		
(10)								1101		Average =			1.37	(40)
Numbe	er of day	s in mor	nth (Tab	le 1a)		_								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	iter heat	ing ener	gy requi	rement:								kWh/ye	ear:	
Assum	ed occu	ipancy, I	N								2	.81		(42)
if TF	A > 13.9	9, N = 1		[1 - exp	(-0.0003	849 x (TF	FA -13.9))2)] + 0.0	0013 x (ΓFA -13.		.01		(42)
	A £ 13.9	,				\/al a		(OE v. NI)	. 20				1	(40)
							erage = designed t			se target o		1.02		(43)
not more	e that 125	litres per p	person per	day (all w	ater use, i	hot and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water	er usage ii	n litres per	day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)						
(44)m=	111.12	107.08	103.04	99	94.96	90.92	90.92	94.96	99	103.04	107.08	111.12		
Eneravi	content of	hot water	used - cal	culated mi	onthly – 4	190 x Vd r	n x nm x D	Tm / 3600		Total = Su	. ,		1212.21	(44)
(45)m=	165.18	144.47	149.08	129.97	124.71	107.61	99.72	114.43	115.8	134.95	147.31	159.97		
(40)111=	100.10	177.77	145.00	120.01	124.71	107.01	33.72	114.40		Total = Su			1593.2	(45)
If instan	taneous w	ater heatir	ng at point	of use (no	hot water	r storage),	enter 0 in	boxes (46			(/			` ′
(46)m=	24.78	21.67	22.36	19.5	18.71	16.14	14.96	17.16	17.37	20.24	22.1	24		(46)
	storage		.1 11.	(. /1.14/1-	1.1- \						· I	
,		ırer's de			r is knov	vn (kvvn	/day):					0		(47)
		actor fro						(47) (40)				0		(48)
		m water r's decla	_	-		s not kno		(47) x (48)) =			0		(49)
			•				in same				1	10		(50)
If con	nmunity he	eating and	no tank in	dwelling,	enter 110	litres in bo	ox (50)						•	
Other	wise if no	stored ho	t water (th	is includes	instantan	eous comi	bi boilers) e	enter '0' in	box (50)					
Hot wa	ter stor	age loss	factor fr	om Tab	e 2 (kW	h/litre/da	ay)				0.	.02		(51)
		from Tal									1.	.03		(52)
Tempe	erature f	actor fro	m Table	2b							0	.6		(53)
٠.		m water	•	, kWh/ye	ear			((50) x (51) x (52) x	(53) =	1.	.03		(54)
	, ,	54) in (59	•						,		1.	.03		(55)
Water		loss cal	culated f	or each	month			((56)m = (55) × (41):	m		1	ı	
(56)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01	511	(56)
it cylinde				rage, (57)	-							m Append	ıx H	
(57)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)

Primary circuit loss (annual) from Table 3 Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m	360	(58))
(modified by factor from Table H5 if there is solar water heating and a cylinder thermos	stat)		
(59)m= 30.58 27.62 30.58 29.59 30.58 29.59 30.58 29.59 30.58	29.59 30.58	(59))
Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m	•		
(61)m= 0 0 0 0 0 0 0 0 0 0	0 0	(61))
Total heat required for water heating calculated for each month (62)m = $0.85 \times (45)$ m + ((46)m + (57)m +	(59)m + (61)m	
(62)m= 227.77 201 211.67 190.54 187.3 168.19 162.31 177.02 176.37 197.54	207.88 222.56	(62))
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contributi	on to water heating)		
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)			
(63)m= 0 0 0 0 0 0 0 0 0	0 0	(63))
Output from water heater	•		
(64)m= 227.77 201 211.67 190.54 187.3 168.19 162.31 177.02 176.37 197.54	207.88 222.56		
Output from water heater	(annual) ₁₁₂	2330.15 (64))
Heat gains from water heating, kWh/month 0.25 x $[0.85 \times (45)\text{m} + (61)\text{m}] + 0.8 \times [(46)\text{m}]$	+ (57)m + (59)m]	
(65)m= 104.99 93.26 99.64 91.67 91.54 84.24 83.23 88.12 86.96 94.94	97.44 103.26	(65))
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from	om community h	, Jeating	
5. Internal gains (see Table 5 and 5a):	om community i		
Metabolic gains (Table 5), Watts			
Jan Feb Mar Apr May Jun Jul Aug Sep Oct	Nov Dec		
(66)m= 168.8 168.8 168.8 168.8 168.8 168.8 168.8 168.8 168.8 168.8 168.8	168.8 168.8	(66))
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5		1	
(67)m= 61.48 54.6 44.41 33.62 25.13 21.22 22.92 29.8 40 50.78	59.27 63.19	(67))
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5			
(68)m= 404.79 408.99 398.41 375.87 347.43 320.69 302.83 298.63 309.22 331.75	360.2 386.93	(68))
	300.2		
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5	54.00 54.00	(69)	١
(69)m= 54.69 54.69 54.69 54.69 54.69 54.69 54.69 54.69 54.69 54.69 54.69	54.69 54.69	(69)	'
Pumps and fans gains (Table 5a)		(70)	
(70)m= 0 0 0 0 0 0 0 0 0	0 0	(70))
Losses e.g. evaporation (negative values) (Table 5)	•	1	
(71)m= -112.54 -112.54 -112.54 -112.54 -112.54 -112.54 -112.54 -112.54 -112.54 -112.54 -112.54	-112.54 -112.54	(71))
Water heating gains (Table 5)			
(72)m= 141.12 138.78 133.93 127.32 123.03 117 111.87 118.44 120.78 127.61	135.33 138.79	(72))
Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (70$	1)m + (72)m		
(73)m= 718.35 713.34 687.7 647.77 606.55 569.87 548.59 557.83 580.95 621.11	665.76 699.87	(73))
6. Solar gains:			
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicab	le orientation.		
Orientation: Access Factor Area Flux g_	FF	Gains	
	able 6c	(W)	
Northeast 0.9x 0.77 x 17.77 x 11.51 x 0.63 x	0.8 =	71.44 (75))
Northeast 0.9x 0.77 x 17.77 x 23.55 x 0.63 x	0.8	146.19 (75))

Northeast 0.9x	(75)
Northeast 0.9x	
	(75)
Nowbeart	(75)
Northeast 0.9x 0.77 x 17.77 x 97.5 x 0.63 x 0.8 = 605.15	(75)
Northeast 0.9x 0.77 x 17.77 x 92.98 x 0.63 x 0.8 = 577.08	(75)
Northeast 0.9x 0.77 x 17.77 x 75.42 x 0.63 x 0.8 = 468.08	(75)
Northeast 0.9x 0.77 x 17.77 x 51.24 x 0.63 x 0.8 = 318.05	(75)
Northeast 0.9x 0.77 x 17.77 x 29.6 x 0.63 x 0.8 = 183.71	(75)
Northeast 0.9x 0.77 x 17.77 x 14.52 x 0.63 x 0.8 = 90.15	(75)
Northeast 0.9x 0.77 x 17.77 x 9.36 x 0.63 x 0.8 = 58.1	(75)
Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m	
(83)m= 71.44 146.19 255.26 420.79 557.14 605.15 577.08 468.08 318.05 183.71 90.15 58.1	(83)
Total gains – internal and solar (84)m = (73)m + (83)m, watts	
(84)m= 789.79 859.53 942.96 1068.57 1163.69 1175.02 1125.67 1025.92 899 804.81 755.91 757.97	(84)
7. Mean internal temperature (heating season)	
Temperature during heating periods in the living area from Table 9, Th1 (°C)	(85)
	(00)
Utilisation factor for gains for living area, h1,m (see Table 9a)	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	(86)
(86)m= 0.95 0.94 0.91 0.86 0.76 0.62 0.47 0.51 0.74 0.88 0.94 0.95	(00)
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)	
(87)m= 18.33 18.55 19.04 19.6 20.25 20.68 20.89 20.87 20.49 19.76 18.88 18.4	(87)
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)	
(88)m= 19.77 19.78 19.78 19.79 19.8 19.81 19.81 19.81 19.81 19.8 19.79 19.78 19.78	(88)
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	
(89)m= 0.95 0.93 0.9 0.84 0.71 0.55 0.36 0.39 0.67 0.85 0.93 0.95	(89)
Maan internal temperature in the rest of dwelling T2 (follow stone 2 to 7 in Table 0a)	
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c) (90)m=	(90)
$tLA = Living area \div (4) = 0.27$	(91)
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$	
(92)m= 16.82 17.12 17.76 18.5 19.32 19.83 20.06 20.05 19.64 18.72 17.56 16.92	(92)
Apply adjustment to the mean internal temperature from Table 4e, where appropriate	
(93)m= 16.82 17.12 17.76 18.5 19.32 19.83 20.06 20.05 19.64 18.72 17.56 16.92	(93)
8. Space heating requirement	
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate	
the utilisation factor for gains using Table 9a	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Utilisation factor for gains, hm:	
(94)m= 0.92 0.9 0.87 0.8 0.69 0.55 0.38 0.41 0.66 0.82 0.9 0.92	(94)
Useful gains, hmGm , W = (94)m x (84)m	
(95)m= 725.88 775.85 815.98 858.91 806.83 644.39 430.16 422.17 591.87 662.41 680.75 698.11	(95)
Monthly average external temperature from Table 8	
(96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 16.9 14.3 10.8 7 4.9	(96)

Heat loss rate for mean internal temperature, Lm , W = $[(39)$ m x $[(9)$)3)m– (96)m	ı l				
	3.27 794.62	-	1595.81	1830.87		(97)
Space heating requirement for each month, kWh/month = 0.024 x	[(97)m - (9	5)m] x (4 ⁻				
(98)m= 868.36 719.12 635.66 439.61 241.96 0 0	0 0	390.46	658.85	842.77		7 (00)
	Total per yea	r (kWh/year	·) = Sum(9	8) _{15,912} =	4796.8	(98)
Space heating requirement in kWh/m²/year				L	43.7	(99)
9b. Energy requirements – Community heating scheme						
This part is used for space heating, space cooling or water heating praction of space heat from secondary/supplementary heating (Tab			unity scr	neme.	0	(301)
Fraction of space heat from community system $1 - (301) =$				Ī	1	(302)
The community scheme may obtain heat from several sources. The procedure allowing includes boilers, heat pumps, geothermal and waste heat from power stations. See A		up to four	other heat	sources; th	e latter	_
Fraction of heat from Community CHP					0.6	(303a)
Fraction of community heat from heat source 2					0.4	(303b)
Fraction of total space heat from Community CHP		(3	02) x (303	a) =	0.6	(304a)
Fraction of total space heat from community heat source 2		(3	02) x (303	b) =	0.4	(304b)
Factor for control and charging method (Table 4c(3)) for community	heating sy	stem		Ī	1	(305)
Distribution loss factor (Table 12c) for community heating system				Ī	1.05	(306)
Space heating				_	kWh/yea	<u></u>
Annual space heating requirement					4796.8	
Space heat from Community CHP	(98) x (3	304a) x (305	5) x (306) =	=	3021.98	(307a)
Space heat from heat source 2	(98) x (3	304b) x (30	5) x (306) =	= [2014.66	(307b)
Efficiency of secondary/supplementary heating system in % (from T	able 4a or a	Appendix	E)	[0	(308
Space heating requirement from secondary/supplementary system	(98) x (3	301) x 100 -	÷ (308) =		0	(309)
Water heating				-		
Annual water heating requirement				Ĺ	2330.15	
If DHW from community scheme: Water heat from Community CHP	(64) x (3	303a) x (30	5) x (306) =	= [1467.99	(310a)
Water heat from heat source 2	(64) x (3	303b) x (305	5) x (306) =	- [978.66	(310b)
Electricity used for heat distribution	0.01 × [(307a)(307e) +	· (310a)(310e)] =	74.83	(313)
Cooling System Energy Efficiency Ratio				Ī	0	(314)
Space cooling (if there is a fixed cooling system, if not enter 0)	= (107)	÷ (314) =		Ī	0	(315)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from outs	side			- -	0	(330a)
warm air heating system fans				Ī	0	(330b)
pump for solar water heating				Ţ	0	(330g)
Total electricity for the above, kWh/year	=(330a)	+ (330b) +	(330g) =	Ĺ	0	(331)
Energy for lighting (calculated in Appendix L)				ļ	434.28	(332)
				L		

Electricity generated by PVs (Appendix M) (negative quantity) (333)-197.18 (334)Electricity generated by wind turbine (Appendix M) (negative quantity) 10b. Fuel costs – Community heating scheme **Fuel Price** Fuel **Fuel Cost** kWh/year (Table 12) £/year (307a) x x = 0.01 =Space heating from CHP (340a) 80.08 2.65 Space heating from heat source 2 (307b) x x 0.01 =(340b) 3.78 76.15 Water heating from CHP (310a) x 0.01 =(342a) 2.65 38.9 (310b) x x 0.01 =Water heating from heat source 2 3.78 (342b)36.99 **Fuel Price** (331)x 0.01 =Pumps and fans (349)11.46 0 (332)x 0.01 =**Energy for lighting** (350)11.46 49.77 Additional standing charges (Table 12) (351)106 Energy saving/generation technologies x = 0.01 =Item 1 (352)11.46 -22.6 = (340a)...(342e) + (345)...(354) =**Total energy cost** 365.3 (355)11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) (356)0.47 Energy cost factor (ECF) $[(355) \times (356)] \div [(4) + 45.0] =$ (357)1.11 SAP rating (section12) (358)84.52 12b. CO2 Emissions – Community heating scheme Electrical efficiency of CHP unit (361)25.58 Heat efficiency of CHP unit (362)58.32 **Emission factor Emissions Energy** kWh/year kg CO2/kWh kg CO2/year $(307a) \times 100 \div (362) =$ Space heating from CHP) 5181.66 1025.97 (363)0.2 less credit emissions for electricity $-(307a) \times (361) \div (362) =$ (364)1325.43 0.53 -701.15 Water heated by CHP $(310a) \times 100 \div (362) =$ (365)2517.1 0.2 498.39 $-(310a) \times (361) \div (362) =$ less credit emissions for electricity 643.86 0.53 -340.6 (366)If there is CHP using two fuels repeat (363) to (366) for the second fuel Efficiency of heat source 2 (%) (367b)92 CO2 associated with heat source 2 $[(307b)+(310b)] \times 100 \div (367b) \times$ 644.21 (368)0.2 Electrical energy for heat distribution [(313) x (372)0.52 38.69 Total CO2 associated with community systems (363)...(366) + (368)...(372)1165.5 (373)CO2 associated with space heating (secondary) (309) x(374)0 0 CO2 associated with water from immersion heater or instantaneous heater (312) x 0.2 (375)0 Total CO2 associated with space and water heating (373) + (374) + (375) =(376)1165.5

		We see (so t)		_ [7,,,
CO2 associated with electricity for p	•	eiling (331)) x	0.52	= [0	(378)
CO2 associated with electricity for I	ighting	(332))) x	0.52	= [224.52	(379)
Energy saving/generation technolog Item 1	gies (333) to (334) as appli	icable	0.53 × 0.01	= _	-104.31	(380)
Total CO2, kg/year	sum of (376)(382) =				1285.72	(383)
Dwelling CO2 Emission Rat	$(383) \div (4) =$			Ē	11.71	(384)
El rating (section 14)					88.87	(385)
13b. Primary Energy – Community	heating scheme					
Electrical efficiency of CHP unit					25.58	(361)
Heat efficiency of CHP unit					58.32	(362)
		Energy kWh/year	Primary factor		Energy /h/year	_
Space heating from CHP)	(307a) × 100 ÷ (362) =	5181.66 X	1.02		5285.3	(363)
less credit emissions for electricity	-(307a) × (361) ÷ (362) =	1325.43 ×	2.92		-3870.26	(364)
Water heated by CHP	(310a) × 100 ÷ (362) =	2517.1 X	1.02		2567.45	(365)
less credit emissions for electricity	-(310a) × (361) ÷ (362) =	643.86 X	2.92	[-1880.06	(366)
Efficiency of heat source 2 (%)	If there is CHP us	ing two fuels repeat (363) to	(366) for the second	fuel [92	(367b)
Energy associated with heat source	2 [(307b)+(310b)] x 100 ÷ (367b) x	1.02	= [3318.68	(368)
Electrical energy for heat distributio	n	[(313) x		= [218.51	(372)
Total Energy associated with comm	nunity systems	(363)(366) + (368)(37	2)	= [5639.61	(373)
if it is negative set (373) to zero (unless specified otherwise	, see C7 in Appendix C	()	[5639.61	(373)
Energy associated with space heati	ing (secondary)	(309) x	0	= [0	(374)
Energy associated with water from	immersion heater or instar	ntaneous heater(312) x	1.02	= [0	(375)
Total Energy associated with space	and water heating	(373) + (374) + (375) =		[5639.61	(376)
Energy associated with space cooli	ng	(315) x	2.92	= [0	(377)
Energy associated with electricity for	or pumps and fans within d	welling (331)) x	2.92	= [0	(378)
Energy associated with electricity for	or lighting	(332))) x	2.92	= [1268.1	(379)
Energy saving/generation technolog	gies		2.92 x 0.01	= _	-575.78	(380)

sum of (376)...(382) =

Total Primary Energy, kWh/year

(383)

6331.93

SAP 2009 Overheating Assessment

Calculated by Stroma FSAP 2009 program, produced and printed on 17 April 2015

Property Details: 07-14-40586 B11 PL1

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: No Number of storeys: 1

Front of dwelling faces: South West

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Low

Night ventilation: False

Blinds, curtains, shutters: Light-coloured curtain or roller blind

Ventilation rate during hot weather (ach): 4 (Windows fully open)

Overheating Details:

Summer ventilation heat loss coefficient: 370.9 (P1)

Transmission heat loss coefficient: 95.3

Summer heat loss coefficient: 466.23 (P2)

Overhangs:

Orientation: Ratio: Z_overhangs:

North East (Rear Elev) 0 1

Solar shading

Orientation: Z blinds: Solar access: Overhangs: Z summer:

North East (Rear Elev) 0.6 0.9 1 0.54 **(P8)**

Solar gains:

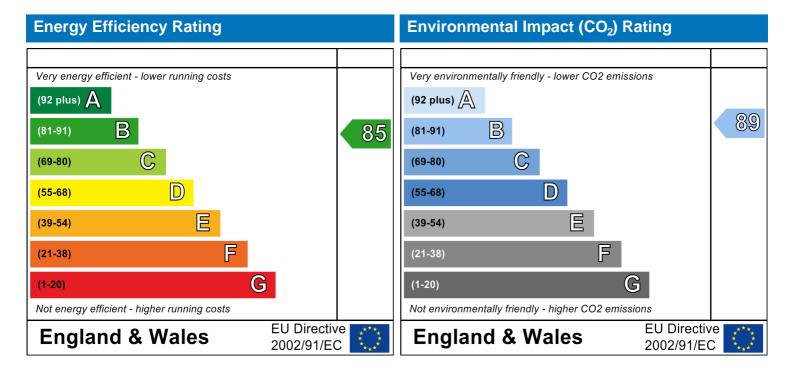
Orientation FF **Shading** Area Flux Gains g_{-} 98.96 0.54 430.72 North East (Rear Elev) 0.9 x 17.77 0.63 8.0 Total 430.72 (P3/P4)

Internal gains:

June July **August** 569.87 557.83 Internal gains 548.59 Total summer gains 1027.45 979.31 915.5 (P5) Summer gain/loss ratio 2.2 2.1 1.96 (P6) Mean summer external temperature (Thames valley) 15.4 17.8 17.8 Thermal mass temperature increment 1.3 1.3 1.3 (P7) Threshold temperature 18.9 21.2 21.06 Likelihood of high internal temperature Not significant Slight Slight

Assessment of likelihood of high internal temperature: Slight

Predicted Energy Assessment


Flat B11

Dwelling type:
Date of assessment:
Produced by:
Total floor area:

Mid floor Flat
16 April 2015
Aymon Winter
109.76 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

Code for Sustainable Homes Report

Assessor and House Details

Assessor Name: Aymon Winter Assessor Number: STRO014511

Property Address: Flat B11

Buiding regulation assessment

kg/m²/year

TER 17.57 DER 12.54

The following code calculations are taken from the Code for Sustainable Homes Technical Guide (Nov 10)

Ene 1 Assessment - Dwelling Emission Rate

Total Energy Type CO2 Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2009 DER Worksheet		12.54	(ZC1)
TER		17.57	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		12.54	
% improvement DER/TER	28.6		

Total Energy Type CO2 Emissions for Codes Levels 6

	kg/m²/year	
DER accounting for SAP Section 16 allowances	12.54	(ZC1)
CO2 emissions from appliances, equation (L14)	14.59	(ZC2)
CO2 emissions from cooking, equation (L16)	1.7	(ZC3)
Net CO2 emissions	28.8	(ZC8)

Result:

Credits awarded for Ene 1 = 3.3

Code Level = 4

Ene 2 - Fabric energy Efficiency

Fabric energy Efficiency: 58.45 Credits awarded for Ene 2 = 0

Ene 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year	
Standard Case CO2 emissions		36.26	
Standard DER		19.97	
Actual Case CO2 emissions		28.83	
Actual DER		12.54	

Reduction in CO2 emissions 20.49

Credits awarded for Ene 7 = 2

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

- · Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.
- · Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified
- · Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.
- · All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.