Regulations Compliance Report

Approved Document L1A 2010 edition assessed by Stroma FSAP 2009 program, Version: 1.5.0.85 Printed on 17 April 2015 at 14:39:23

Project Information:

Assessed By: Aymon Winter (STRO014511) **Building Type:** Flat

Dwelling Details:

NEW DWELLING DESIGN STAGE

Site Reference: Lancaster Street Plot Reference: 07-14-40586 B17 PL1

Flat B17 Address:

Client Details:

H G Construction Ltd - Hitchin Name: 4 Hunting Gate, Hitchin, SG40TJ Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1 TER and DER

Fuel for main heating system: Mains gas (c), Mains gas (c)

Fuel factor: 1.00 (mains gas (c), mains gas (c))

Target Carbon Dioxide Emission Rate (TER) 15.98 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 11.84 kg/m² OK

2 Fabric U-values

Element Highest Average 0.15 (max. 0.30) OK External wall 0.16 (max. 0.70) Party wall 0.00 (max. 0.20) **OK** (no floor) Floor Roof (no roof)

OK **Openings** 1.60 (max. 2.00) 1.60 (max. 3.30)

3 Air permeability

6.00 Air permeability at 50 pascals **OK** Maximum 10.0

4 Heating efficiency

Main Heating system: Community heating schemes - mains gas

Secondary heating system: None

5 Cylinder insulation

Hot water Storage: No cylinder

6 Controls

Space heating controls Charging system linked to use of community heating, programmer and TRVs OK

Hot water controls: No cylinder

7 Low energy lights

Percentage of fixed lights with low-energy fittings 100.0%

75.0% **OK** Minimum

8 Mechanical ventilation

Not applicable

Regulations Compliance Report

9 Summertime temperature

Overheating risk (Thames valley):

Based on:

Overshading:

Windows facing: North East Windows facing: North West

Ventilation rate:

Blinds/curtains:

Medium

OK

Average or unknown

20.3m², Overhang twice as wide as window, ratio NaN 4.55m², Overhang twice as wide as window, ratio NaN

4.00

Light-coloured curtain or roller blind shutter closed 100% of daylight hours

10 Key features

External Walls U-value External Walls U-value External Walls U-value

Community heating, heat from boilers - mains gas

Photovaltaic array

0.13 W/m²K

0.12 W/m²K

0.16 W/m²K

SAP Input

Property Details: 07-14-40586 B17 PL1

Address: Flat B17
Located in: England
Region: Thames valley

UPRN:

Date of assessment: 16 April 2015 Date of certificate: 17 April 2015

Assessment type: New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

New dwelling
Unknown
No related party
Indicative Value Low

Dwelling designed to use less than 125 litres per Person per day: True

Property description:

Dwelling type:

Flat

Detachment:

Year Completed:

2015

Floor Location:

.

Floor 0

Floor area:

IE m2

30.9 m² (fraction 0.356)

Storey height:

86.7

86.75 m²

2.56 m

Living area: Front of dwelling faces:

South West

Opening types:

Name:	Source:	Type:	Glazing:	Argon:	Frame:
Front Door	Manufacturer	Solid			PVC-U
Rear Elev	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	Metal
Side Elev	Manufacturer	Windows	low-E, $En = 0.05$, soft coat	Yes	Metal

Name:	Gap:	Frame Fa	actor: g-value:	U-value:	Area:	No. of Openings:
Front Door	mm	0.7	0	1.6	2.12	1
Rear Elev	16mm or more	0.8	0.63	1.6	20.3	1
Side Elev	16mm or more	0.8	0.63	1.6	4.55	1

Name:	Type-Name:	Location:	Orient:	Width:	Height:
Front Door		Walls to Corridor	South West	0	0
Rear Elev		Block External Wall	North East	0	0
Side Elev		Block External Wall	North West	0	0

Overshading: Average or unknown

Opaque Elements

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Element	<u>ts</u>						
Walls to Corridor	31.54	2.12	29.42	0.14	0.43	False	N/A
Walls to Stairwell	2.28	0	2.28	0.14	0.9	False	N/A
Block External Wal	I 58.57	24.85	33.72	0.16	0	False	N/A
Internal Element	<u>s</u>						
Party Elements							
Party Walls	26.02						N/A
Party Ceiling	86.75						N/A
Party Ceiling	86.75						N/A

Thermal bridges

Thermal bridges: No information on thermal bridging (y=0.15) (y=0.15)

SAP Input

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 3
Number of sides sheltered: 2
Pressure test: 6

Main heating system

Main heating system: Community heating schemes

Heat source: Community CHP

heat from boilers - mains gas, heat fraction 0.6, efficiency 83.9

Heat source: Community boilers

heat from boilers – mains gas, heat fraction 0.4, efficiency 92

Piping>=1991, pre-insulated, low temp, variable flow

Main heating Control:

Main heating Control: Charging system linked to use of community heating, programmer and TRVs

Control code: 2306

Secondary heating system:

Secondary heating system: None

Water heating:

Water heating: From main heating system

Water code: 901

Fuel :heat from boilers - mains gas

No hot water cylinder Solar panel: False

Others:

Electricity tariff: standard tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%
Terrain type: Dense urban
EPC language: English
Wind turbine: No

Photovoltaics: <u>Photovoltaic 1</u>

Installed Peak power: 0.19 Tilt of collector: 30°

Overshading: None or very little Collector Orientation: South East

Assess Zero Carbon Home: No

User Details: Aymon Winter STRO014511 **Assessor Name:** Stroma Number: Stroma FSAP 2009 **Software Version: Software Name:** Version: 1.5.0.85 Property Address: 07-14-40586 B17 PL1 Flat B17 Address: 1. Overall dwelling dimensions: Ave Height(m) Area(m²) Volume(m³) Ground floor 86.75 (1a) x (3a) 2.56 (2a) 222.08 Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+....(1n)(4)86.75 Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+....(3n) =222.08 (5) total main Secondary other m³ per hour heating heating x 40 =Number of chimneys (6a) 0 0 x 20 =Number of open flues 0 O O 0 0 (6b) Number of intermittent fans x 10 =(7a) 3 30 x 10 =Number of passive vents (7b) 0 0 x 40 =Number of flueless gas fires (7c)Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = \div (5) = (8) 0.14 If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) (9)O Additional infiltration (10)[(9)-1]x0.1 =0 Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction (11)0 if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12) If no draught lobby, enter 0.05, else enter 0 (13)0 Percentage of windows and doors draught stripped (14)0 Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =O (16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)6 If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise (18) = (16)0.44 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides on which sheltered (19)2 $(20) = 1 - [0.075 \times (19)] =$ Shelter factor (20)0.85 $(21) = (18) \times (20) =$ Infiltration rate incorporating shelter factor (21)0.37 Infiltration rate modified for monthly wind speed Feb Sep Jan Mar Apr Mav Jun Jul Aug Oct Nov Dec Monthly average wind speed from Table 7 (22)m =5.1 4.5 4.1 3.9 3.7 3.7 4.2 4.5 4.8 5.1

1.12

1.02

0.98

0.92

0.92

1.05

1.12

1.2

1.27

1.27

Wind Factor $(22a)m = (22)m \div 4$

1.27

1.35

(22a)m

Adjusted infiltra	ation rate	e (allowi	ng for sh	elter an	d wind s	speed) =	(21a) x	(22a)m					
0.5	0.47	0.47	0.42	0.38	0.36	0.34	0.34	0.39	0.42	0.44	0.47		
Calculate effec		•	rate for ti	ne appli	cable ca	se	!	!			!	•	(cc.)
If mechanica			andiv N (2º	3h) - (23a) × Fmv (e	aguation (N	NSN othe	rwisa (23h) <i>- (</i> 23a)			0	(23a)
If balanced with) = (23a)			0	(23b)
a) If balance		-		_					2h\m + ('	23h) ~ [⁴	1 _ (23c)	· 1001	(23c)
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0	+ 100j	(24a)
b) If balance						<u> </u>							, ,
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If whole h	ouse ext	ract ven	tilation o	r positiv	e input v	L ventilatio	n from o	L outside			ļ	l	
if (22b)m				•	•				5 × (23b)			
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If natural v					•						-		
if (22b)m		<u> </u>	<u> </u>	•	<u> </u>		 					Ī	(244)
(24d)m= 0.62	0.61	0.61	0.59	0.57	0.56	0.56	0.56	0.58	0.59	0.6	0.61		(24d)
Effective air			<u> </u>	•	``	ŕ		` 	0.50	0.6	0.64	1	(25)
(25)m= 0.62	0.61	0.61	0.59	0.57	0.56	0.56	0.56	0.58	0.59	0.6	0.61		(25)
3. Heat losses	s and hea	at loss p	paramete	er:									
ELEMENT	Gross area (-	Openin		Net Ar A ,r		U-valı W/m2		A X U (W/ł	()	k-value kJ/m²-l		A X k kJ/K
Doors		,			2.12	_	1.6		3.392	$\stackrel{\prime}{\Box}$			(26)
Windows Type	1				20.3	x1.	/[1/(1.6)+	0.04] =	30.53				(27)
Windows Type	2				4.55	x1.	/[1/(1.6)+	0.04] =	6.84	=			(27)
Walls Type1	31.54	4	2.12	\neg	29.42	2 x	0.13		3.88				(29)
Walls Type2	2.28		0	=	2.28	×	0.12	=	0.28	-		i i	(29)
Walls Type3	58.57	7	24.85	<u> </u>	33.72	2 x	0.16	<u> </u>	5.4	-		i i	(29)
Total area of el	lements,	m²			92.39								(31)
Party wall					26.02	2 x	0		0				(32)
Party floor					86.75	<u> </u>						i i	(32a)
Party ceiling					86.75	=				_ 		7 F	(32b)
* for windows and ** include the area						ated using	formula 1	/[(1/U-valu	ıe)+0.04] a	s given in	paragraph	3.2	``
Fabric heat los				o ama pan			(26)(30)) + (32) =				50.32	(33)
Heat capacity (·	,	,					((28)	.(30) + (32	2) + (32a).	(32e) =	11168.60	
Thermal mass	paramet	er (TMF	P = Cm ÷	TFA) ir	ı kJ/m²K			Indica	tive Value:	Low		100	(35)
For design assess can be used instea				constructi	ion are not	t known pr	ecisely the	e indicative	values of	TMP in Ta	able 1f		
Thermal bridge				ısing Ap	pendix ł	<						13.86	(36)
if details of therma	,	,			•								` ′
Total fabric hea	at loss							(33) +	(36) =			64.18	(37)
Ventilation hea	t loss ca	lculated	monthly	′				(38)m	= 0.33 × (25)m x (5)	1	Ī	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

(38)m=	45.78	44.79	44.79	42.99	41.91	41.41	40.93	40.93	42.17	42.99	43.86	44.79		(38)
Heat tr	ansfer c	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	109.96	108.97	108.97	107.17	106.09	105.59	105.11	105.11	106.35	107.17	108.04	108.97		
Heat Id	ss para	meter (H	HLP), W	/m²K						Average = = (39)m ÷	Sum(39) ₁ .	12 /12=	107.29	(39)
(40)m=	1.27	1.26	1.26	1.24	1.22	1.22	1.21	1.21	1.23	1.24	1.25	1.26		
Numbe	er of day	rs in moi	nth (Tab	le 1a)	•	•	•		,	Average =	Sum(40) ₁	12 /12=	1.24	(40)
rannoc	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
(/														, ,
4. Wa	iter heat	ing ene	rgy requi	irement:								kWh/ye	ear:	
٨٥٥٠١٣٥	ad agai	nanay l	NI.											(40)
		ıpancy, l 9, N = 1		[1 - exp	(-0.0003	349 x (TF	A -13.9)2)] + 0.0	0013 x (ΓFA -13.		58		(42)
	A £ 13.9	•												
								(25 x N) to achieve		se target o		.44		(43)
		-		r day (all w		-	-			g				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot water	er usage ii	n litres per	day for ea	ach month	Vd,m = fa	ctor from 7	Table 1c x		•		ļ.			
(44)m=	104.99	101.17	97.35	93.53	89.71	85.9	85.9	89.71	93.53	97.35	101.17	104.99		
				!							m(44) ₁₁₂ =	L	1145.29	(44)
Energy (content of	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,r	n x nm x E	OTm / 3600) kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m=	156.06	136.49	140.85	122.8	117.83	101.67	94.22	108.11	109.41	127.5	139.18	151.14		_
If instant	taneous w	ater heatii	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46)		Fotal = Su	m(45) ₁₁₂ =	= [1505.25	(45)
(46)m=	23.41 storage	20.47	21.13	18.42	17.67	15.25	14.13	16.22	16.41	19.13	20.88	22.67		(46)
	•		clared lo	oss facto	r is knov	vn (kWh	/dav)·					0		(47)
•			m Table			(,, , .					0		(48)
•				 , kWh/y€	ear			(47) x (48)) =			0		(49)
• • • • • • • • • • • • • • • • • • • •			_	nder loss		s not kno		() (-)				<u> </u>		(1.0)
Cylinde	er volum	ne (litres) includir	ng any s	olar stor	age with	in same	:			1	10		(50)
	-	_		dwelling,					(50)					
			•				,	enter '0' in	box (50)					
		Ū		om Tabl	e 2 (kW	h/litre/da	ıy)				0.	02		(51)
		from Ta		Oh								.03		(52)
•			m Table								0	.6		(53)
• • • • • • • • • • • • • • • • • • • •			-	, kWh/ye	ear			((50) x (51) x (52) x	(53) =		03		(54)
·	, ,	54) in (5	•	for each	month			((56)m = (55) ~ (44).	m	1.	.03		(55)
						20.00					20.00	20.04		(50)
(56)m=	32.01	28.92	32.01	30.98	32.01 m = (56)m	30.98 x [(50) – (32.01 H11)1 <i>÷ (</i> 5	32.01 0) else (5	30.98 7)m = (56)	32.01 m where (30.98 H11) is fro	32.01 m Appendi	ix H	(56)
-			i	1	· · ·	I	· · · ·				ī	· · ·	A (1	(EZ\
(57)m=	32.01	28.92	32.01	30.98	32.01	30.98	32.01	32.01	30.98	32.01	30.98	32.01		(57)

Primary circuit loss (annual) from Table 3 Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m	360	(58	8)
(modified by factor from Table H5 if there is solar water heating and a cylinder thermos	stat)		
(59)m= 30.58 27.62 30.58 29.59 30.58 29.59 30.58 29.59 30.58	29.59 30.58	(59	9)
Combi loss calculated for each month (61)m = (60) ÷ 365 × (41)m			
(61)m= 0 0 0 0 0 0 0 0 0	0 0	(61	1)
Total heat required for water heating calculated for each month $(62)m = 0.85 \times (45)m + (62)m $	(46)m + (57)m +	(59)m + (61)m	
(62)m= 218.65 193.03 203.44 183.37 180.41 162.24 156.81 170.7 169.98 190.09	199.75 213.73	(62	2)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution	on to water heating)		
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)			
(63)m= 0 0 0 0 0 0 0 0 0 0	0 0	(63	3)
Output from water heater			
(64)m= 218.65 193.03 203.44 183.37 180.41 162.24 156.81 170.7 169.98 190.09	199.75 213.73		
Output from water heater	(annual) ₁₁₂	2242.2 (64	4)
Heat gains from water heating, kWh/month 0.25 x $[0.85 \times (45)\text{m} + (61)\text{m}] + 0.8 \text{ x} [(46)\text{m}]$	+ (57)m + (59)m	1]	
(65)m= 101.96 90.61 96.9 89.29 89.25 82.26 81.4 86.02 84.83 92.47	94.73 100.33	(65	5)
include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from	om community h	eating	
5. Internal gains (see Table 5 and 5a):	•		
Metabolic gains (Table 5), Watts			
Jan Feb Mar Apr May Jun Jul Aug Sep Oct	Nov Dec		
(66)m= 154.71 154.71 154.71 154.71 154.71 154.71 154.71 154.71 154.71 154.71	154.71 154.71	(66	6)
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5			
(67)m= 51.92 46.12 37.51 28.39 21.22 17.92 19.36 25.17 33.78 42.89	50.06 53.37	(67	7)
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5	•		
(68)m= 347.72 351.32 342.23 322.88 298.44 275.48 260.13 256.52 265.62 284.97	309.41 332.37	(68	8)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5	I	•	
(69)m= 53.05 53.05 53.05 53.05 53.05 53.05 53.05 53.05 53.05	53.05 53.05	(69	9)
Pumps and fans gains (Table 5a)		1	
(70)m= 0 0 0 0 0 0 0 0 0 0	0 0	(70	0)
Losses e.g. evaporation (negative values) (Table 5)		1	
(71)m= -103.14	-103.14 -103.14	(71	1)
Water heating gains (Table 5)	l l		
(72)m= 137.05 134.84 130.25 124.01 119.96 114.25 109.41 115.62 117.82 124.28	131.57 134.85	(72	2)
Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (70)m$		`	,
(73)m= 641.31 636.9 614.61 579.9 544.24 512.27 493.52 501.93 521.84 556.77	595.67 625.21	(73	3)
6. Solar gains:	000.07		-,
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable	le orientation.		
Orientation: Access Factor Area Flux g_	FF	Gains	
0_	able 6c	(VV)	
Northeast 0.9x 0.77 x 20.3 x 11.51 x 0.63 x	0.8 =	81.61 (75	5)
Northeast 0.9x 0.77 x 20.3 x 23.55 x 0.63 x	0.8 =	167.01 (75	5)

Northeast _{0.9x}	0.77	X	20	.3	x	41.13	X	0.6	3	_ x [0.8	=	291.6	(75)
Northeast _{0.9x}	0.77	Х	20	.3	x	67.8	X	0.6	3	_ x [0.8	=	480.7	(75)
Northeast _{0.9x}	0.77	X	20	.3	x	89.77	X	0.6	3	x [0.8	=	636.46	(75)
Northeast _{0.9x}	0.77	X	20	.3	x	97.5	X	0.6	3	x [0.8	=	691.31	(75)
Northeast _{0.9x}	0.77	X	20	.3	x	92.98	X	0.6	3	_ x [0.8	=	659.24	(75)
Northeast _{0.9x}	0.77	X	20	.3	x	75.42	X	0.6	3	x [0.8	=	534.73	(75)
Northeast 0.9x	0.77	X	20	.3	x	51.24	X	0.6	3	x [0.8	=	363.34	(75)
Northeast _{0.9x}	0.77	x	20	.3	x	29.6	x	0.6	3	x	0.8	=	209.86	(75)
Northeast _{0.9x}	0.77	x	20	.3	x	14.52	X	0.6	3	x	0.8	=	102.99	(75)
Northeast 0.9x	0.77	X	20	.3	x	9.36	X	0.6	3	x [0.8	=	66.37	(75)
Northwest 0.9x	0.77	х	4.5	55	x	11.51	X	0.6	3	x [0.8	=	18.29	(81)
Northwest 0.9x	0.77	X	4.5	55	x	23.55	X	0.6	3	x [0.8	=	37.43	(81)
Northwest 0.9x	0.77	Х	4.5	55	x	41.13	X	0.6	3	x [0.8	=	65.36	(81)
Northwest 0.9x	0.77	X	4.5	55	x	67.8	X	0.6	3	x [0.8	=	107.74	(81)
Northwest 0.9x	0.77	X	4.5	55	x	89.77	X	0.6	3	x [0.8	=	142.66	(81)
Northwest 0.9x	0.77	X	4.5	55	x	97.5	X	0.6	3	x [0.8	=	154.95	(81)
Northwest 0.9x	0.77	X	4.5	55	x	92.98	X	0.6	3	x	0.8	=	147.76	(81)
Northwest 0.9x	0.77	X	4.5	55	x	75.42	X	0.6	3	x [0.8	=	119.85	(81)
Northwest 0.9x	0.77	X	4.5	55	x	51.24	X	0.6	3	x [0.8	=	81.44	(81)
Northwest 0.9x	0.77	X	4.5	55	x	29.6	X	0.6	3	x [0.8	=	47.04	(81)
Northwest 0.9x	0.77	X	4.5	55	x	14.52	X	0.6	3	x [0.8	=	23.08	(81)
Northwest 0.9x	0.77	X	4.5	55	x	9.36	X	0.6	3	_ x [0.8	=	14.88	(81)
							_							_
Solar gains in	watts, ca	alculated	for eac	h month	1		(83)m	n = Sum(7	'4)m	.(82)m			-	
(83)m= 99.9	204.44	356.96	588.45	779.12	846.20		654	.58 444	4.77	256.9	126.07	81.24		(83)
Total gains – i	nternal a											1	7	
(84)m= 741.21	841.34	971.56	1168.34	1323.36	1358.5	3 1300.53	1156	6.51 966	6.62	813.67	721.73	706.45		(84)
7. Mean inter	rnal temp	erature	(heating	seasor	1)									
Temperature	during h	eating p	eriods ir	the livi	ng area	a from Ta	ble 9	, Th1 (°	C)				21	(85)
Utilisation fac	ctor for g	ains for I	iving are	ea, h1,m	(see	able 9a)	,						-	
Jan	Feb	Mar	Apr	May	Jun	Jul	А	ug S	Sep	Oct	Nov	Dec		
(86)m= 0.93	0.91	0.85	0.76	0.6	0.45	0.32	0.3	35 0	.6	0.81	0.91	0.93		(86)
Mean_interna	al tempera	ature in	living are	ea T1 (f	ollow s	teps 3 to	7 in T	able 9c	;)				_	
(87)m= 18.78	19.05	19.57	20.13	20.63	20.87	20.96	20.	95 20	.73	20.13	19.29	18.83		(87)
Temperature	during h	eating p	eriods ir	rest of	dwellir	ng from Ta	able 9	9, Th2 (°C)					
(88)m= 19.87	19.88	19.88	19.89	19.9	19.91	19.91	19.		9.9	19.89	19.89	19.88]	(88)
Utilisation fac	ctor for a	ains for i	rest of d	wellina	h2 m (see Table	9a)				•		-	
(89)m= 0.92	0.89	0.83	0.72	0.56	0.39	0.24	0.2	27 0.	53	0.78	0.9	0.92	1	(89)
Mean interna	l tompor			of dwall	ing To		<u> </u>	!		2 00/		<u> </u>	1	
(90)m= 16.95	17.35	18.08	18.86	19.51	19.8	19.89	19.		.66	18.89	17.71	17.03	1	(90)
(00)=	1	. 5.50	. 5.50	1	1 .0.0	1 .0.00	1 '5.	10			ing area ÷ (4	<u> </u>	0.36	(91)
					`	- :	,.	<i>c</i>			J	•	0.00	
Mean interna (92)m= 17.6	l tempera	ature (fo	r the wh	ole dwe 19.91	lling) = 20.18	_	+ (1		≺T2 0.04	19.33	18.27	17.67	1	(92)

Apply adjustment to the mean internal temperature from Table 4e, v	where appro	priate				
(93)m= 17.6 17.96 18.61 19.31 19.91 20.18 20.27 20.2	27 20.04	19.33	18.27	17.67		(93)
8. Space heating requirement						
Set Ti to the mean internal temperature obtained at step 11 of Table	e 9b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the utilisation factor for gains using Table 9a Jan Feb Mar Apr May Jun Jul Au	ıg Sep	Oct	Nov	Dec		
Utilisation factor for gains, hm:	ig Gep	Oct	INOV	Dec		
(94)m= 0.89 0.87 0.8 0.7 0.56 0.4 0.27 0.3	0.54	0.75	0.87	0.9		(94)
Useful gains, hmGm , W = (94)m x (84)m						
(95)m= 663.26 728.16 781.19 823.04 735.67 546.46 344.94 341.	42 521.94	613.91	626.31	634.64		(95)
Monthly average external temperature from Table 8						
(96)m= 4.5 5 6.8 8.7 11.7 14.6 16.9 16.		10.8	7	4.9		(96)
Heat loss rate for mean internal temperature, Lm , W = $[(39)$ m x $[(93)$ m x		914.22	1217.97	1391.51		(97)
Space heating requirement for each month, kWh/month = $0.024 \times [0.00]$				1391.31		(01)
(98)m= 578.32 459.48 376.68 226.09 100.36 0 0 0	ì	223.43	426	563.11		
	Total per year	(kWh/year) = Sum(9	8) _{15,912} =	2953.48	(98)
Space heating requirement in kWh/m²/year					34.05	」 (99)
9b. Energy requirements – Community heating scheme						
This part is used for space heating, space cooling or water heating p	rovided by	a commi	unity sch	neme.		
Fraction of space heat from secondary/supplementary heating (Table			y		0	(301)
Fraction of space heat from community system $1 - (301) =$					1	(302)
The community scheme may obtain heat from several sources. The procedure allows	for CHP and t	up to four o	other heat	sources; ti	he latter	_
includes boilers, heat pumps, geothermal and waste heat from power stations. See A	ppendix C.			ı		٦,,,,,
Fraction of heat from Community CHP					0.6	(303a)
Fraction of community heat from heat source 2					0.4	(303b)
Fraction of total space heat from Community CHP		(3)	02) x (303	a) =	0.6	(304a)
Fraction of total space heat from community heat source 2		(3	02) x (303	b) =	0.4	(304b)
Factor for control and charging method (Table 4c(3)) for community	heating sys	tem			1	(305)
Distribution loss factor (Table 12c) for community heating system					1.05	(306)
Space heating					kWh/year	
Annual space heating requirement					2953.48	7
Space heat from Community CHP	(98) x (30	04a) x (305	5) x (306)	=	1860.69	☐ (307a)
Space heat from heat source 2	(98) x (30	04b) x (305	5) x (306)	! _	1240.46] (307b)
·	, , ,	, ,	, , ,			╡`
Efficiency of secondary/supplementary heating system in % (from Ta			,		0	(308
Space heating requirement from secondary/supplementary system	(98) x (30	01) x 100 ÷	÷ (308) =		0	(309)
Water heating				i		_
Annual water heating requirement					2242.2	╛
If DHW from community scheme: Water heat from Community CHP	(64) x (3(03a) x (305	5) x (306)	<u> </u>	1412.58	(310a)
Tate. Heat from Community Of II	(0.) x (00	. Ju, n (000	, (000)		1412.00	ارنانانان

Water heat from heat source 2		(64) x (303b) x (305) x (306) =	941.72 (310
Electricity used for heat distribution		0.01 × [(307a)(307e) + (310a)(310e)] =	54.55 (313
Cooling System Energy Efficiency	Ratio		0 (314
Space cooling (if there is a fixed co	oling system, if not enter 0)	= (107) ÷ (314) =	0 (315
Electricity for pumps and fans withi mechanical ventilation - balanced,		ıtside	0 (330
warm air heating system fans	oxudot of poolaro input from ot	atoliu o	0 (330
pump for solar water heating			0 (330
Total electricity for the above, kWh	/vear	=(330a) + (330b) + (330g) =	0 (331
Energy for lighting (calculated in Ap		, , , , , ,	366.79 (332
Electricity generated by PVs (Appe			-156.1 (333
Electricity generated by wind turbin	e (Appendix M) (negative quan	ntity)	0 (334
10b. Fuel costs – Community hea	ting scheme		
	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating from CHP	(307a) x	2.65 x 0.01 =	49.31 (340
Space heating from heat source 2	(307b) x	3.78 x 0.01 =	46.89 (340
Water heating from CHP	(310a) x	2.65 x 0.01 =	37.43 (342
Water heating from heat source 2	(310b) x	3.78 x 0.01 =	35.6 (342
		Fuel Price	
Pumps and fans	(331)	11.46 × 0.01 =	0 (349
Energy for lighting	(332)	11.46 x 0.01 =	42.03 (350
Additional standing charges (Table	12)		106 (351
Energy saving/generation technolo Item 1	gies	11.46 x 0.01 =	-17.89 (352
Total energy cost	= (340a)(342e) + (345)(354	4) =	299.37 (355
11b. SAP rating - Community hea	ting scheme		
Energy cost deflator (Table 12)			0.47 (356
Energy cost factor (ECF)	$[(355) \times (356)] \div [(4) + 45.0] =$		1.07 (357
SAP rating (section12)			85.1 (358
12b. CO2 Emissions – Community	heating scheme		
Electrical efficiency of CHP unit			25.58 (361
Heat efficiency of CHP unit			58.32 (362
		Energy Emission factor kWh/year kg CO2/kWh	Emissions kg CO2/year
Space heating from CHP)	(307a) × 100 ÷ (362) =	3190.45 X 0.2	631.71 (363
less credit emissions for electricity	-(307a) × (361) ÷ (362) =	816.09 × 0.53	-431.71 (364

Water heated by CHP	(310a) × 100 ÷ (362) =	2422.1 ×	0.2]	479.57	(365)
less credit emissions for electricity	$-(310a) \times (361) \div (362) =$	619.55 ×	0.53]	-327.74	(366)
Efficiency of heat source 2 (%)	If there is CHP us	sing two fuels repeat (363) to	o (366) for the secon	nd fuel	92	(367b)
CO2 associated with heat source 2	[(307)	o)+(310b)] x 100 ÷ (367b) x	0.2	=	469.64	(368)
Electrical energy for heat distribution	on	[(313) x	0.52	=	28.2	(372)
Total CO2 associated with commun	nity systems	(363)(366) + (368)(3	72)	=	849.67	(373)
CO2 associated with space heating	g (secondary)	(309) x	0	=	0	(374)
CO2 associated with water from im	mersion heater or instanta	neous heater (312) x	0.2	=	0	(375)
Total CO2 associated with space a	nd water heating	(373) + (374) + (375) =			849.67	(376)
CO2 associated with electricity for	pumps and fans within dwe	elling (331)) x	0.52	=	0	(378)
CO2 associated with electricity for	lighting	(332))) x	0.52] =	189.63	(379)
Energy saving/generation technolo	gies (333) to (334) as appl	licable				7
Item 1	(0-0)		0.53 × 0.	01 =	-82.58	<u> </u> (380)
Total CO2, kg/year	sum of (376)(382) =				956.73	(383)
Dwelling CO2 Emission Rate	te (383) ÷ (4) =			Ļ	11.03	(384)
El rating (section 14)	hoating sohomo				90.27	(385)
13b. Primary Energy – Community Electrical efficiency of CHP unit	nealing scheme				25.58	(361)
Heat efficiency of CHP unit						」
Heat efficiency of CHP unit		Energy	Primary		58.32	(362)
Heat efficiency of CHP unit		Energy kWh/year	Primary factor			(362)
Heat efficiency of CHP unit Space heating from CHP)	(307a) × 100 ÷ (362) =	• • • • • • • • • • • • • • • • • • • •	-		58.32 Energy	(362)
·	(307a) × 100 ÷ (362) = -(307a) × (361) ÷ (362) =	kWh/year	factor		58.32 Energy Wh/year	_
Space heating from CHP)		kWh/year x	factor		58.32 Energy Wh/year 3254.25	(363)
Space heating from CHP) less credit emissions for electricity	$-(307a) \times (361) \div (362) =$	kWh/year 3190.45	1.02 2.92		58.32 Energy Wh/year 3254.25 -2382.99	(363)
Space heating from CHP) less credit emissions for electricity Water heated by CHP	$-(307a) \times (361) \div (362) =$ $(310a) \times 100 \div (362) =$ $-(310a) \times (361) \div (362) =$	kWh/year 3190.45 X 816.09 X 2422.1 X	1.02 2.92 1.02 2.92	kv]]]	58.32 Energy Wh/year 3254.25 -2382.99 2470.54	(363) (364) (365)
Space heating from CHP) less credit emissions for electricity Water heated by CHP less credit emissions for electricity	$-(307a) \times (361) \div (362) =$ $(310a) \times 100 \div (362) =$ $-(310a) \times (361) \div (362) =$ If there is CHP us	kWh/year 3190.45 X 816.09 X 2422.1 X 619.55 X	1.02 2.92 1.02 2.92	kv]]]	58.32 Energy Wh/year 3254.25 -2382.99 2470.54 -1809.1	(363) (364) (365) (366)
Space heating from CHP) less credit emissions for electricity Water heated by CHP less credit emissions for electricity Efficiency of heat source 2 (%)	$-(307a) \times (361) \div (362) =$ $(310a) \times 100 \div (362) =$ $-(310a) \times (361) \div (362) =$ If there is CHP us $= 2$ [(307b)	3190.45 X 816.09 X 2422.1 X 619.55 X sing two fuels repeat (363) to	1.02 2.92 1.02 2.92 0 (366) for the second	kV	58.32 Energy Wh/year 3254.25 -2382.99 2470.54 -1809.1	(363) (364) (365) (366) (367b)
Space heating from CHP) less credit emissions for electricity Water heated by CHP less credit emissions for electricity Efficiency of heat source 2 (%) Energy associated with heat source	$-(307a) \times (361) \div (362) =$ $(310a) \times 100 \div (362) =$ $-(310a) \times (361) \div (362) =$ If there is CHP use 2 [(307b)	kWh/year 3190.45	1.02 2.92 1.02 2.92 0 (366) for the second 1.02	kV	58.32 Energy Wh/year 3254.25 -2382.99 2470.54 -1809.1 92 2419.38	(363) (364) (365) (366) (367b) (368)
Space heating from CHP) less credit emissions for electricity Water heated by CHP less credit emissions for electricity Efficiency of heat source 2 (%) Energy associated with heat source Electrical energy for heat distribution	-(307a) × (361) ÷ (362) = (310a) × 100 ÷ (362) = -(310a) × (361) ÷ (362) = If there is CHP use 2 [(307b) nunity systems	kWh/year 3190.45	1.02 2.92 1.02 2.92 0 (366) for the secon 1.02	kV	58.32 Energy Wh/year 3254.25 -2382.99 2470.54 -1809.1 92 2419.38 159.3	(363) (364) (365) (366) (367b) (368) (372)
Space heating from CHP) less credit emissions for electricity Water heated by CHP less credit emissions for electricity Efficiency of heat source 2 (%) Energy associated with heat source Electrical energy for heat distribution Total Energy associated with comme	-(307a) × (361) ÷ (362) = (310a) × 100 ÷ (362) = -(310a) × (361) ÷ (362) = If there is CHP use 2 [(307b) nunity systems (unless specified otherwise	kWh/year 3190.45	1.02 2.92 1.02 2.92 0 (366) for the secon 1.02	kV	58.32 Energy Wh/year 3254.25 -2382.99 2470.54 -1809.1 92 2419.38 159.3 4111.38	(363) (364) (365) (366) (367b) (368) (372) (373)
Space heating from CHP) less credit emissions for electricity Water heated by CHP less credit emissions for electricity Efficiency of heat source 2 (%) Energy associated with heat source Electrical energy for heat distribution Total Energy associated with commits if it is negative set (373) to zero	-(307a) × (361) ÷ (362) = (310a) × 100 ÷ (362) = -(310a) × (361) ÷ (362) = If there is CHP use 2 [(307b) nunity systems (unless specified otherwise ing (secondary)	kWh/year 3190.45	1.02 2.92 1.02 2.92 0 (366) for the secon 1.02 72)	kV	58.32 Energy Wh/year 3254.25 -2382.99 2470.54 -1809.1 92 2419.38 159.3 4111.38 4111.38	(363) (364) (365) (366) (367b) (368) (372) (373) (373)
Space heating from CHP) less credit emissions for electricity Water heated by CHP less credit emissions for electricity Efficiency of heat source 2 (%) Energy associated with heat source Electrical energy for heat distribution Total Energy associated with commits if it is negative set (373) to zero (373) to zero (373) to zero (373) associated with space heat	-(307a) × (361) ÷ (362) = (310a) × 100 ÷ (362) = -(310a) × (361) ÷ (362) = If there is CHP use 2 [(307b) on nunity systems (unless specified otherwise) ing (secondary) immersion heater or instar	kWh/year 3190.45	1.02 2.92 1.02 2.92 0 (366) for the secon 1.02 72) C)	kV	58.32 Energy Wh/year 3254.25 -2382.99 2470.54 -1809.1 92 2419.38 159.3 4111.38 4111.38	(363) (364) (365) (366) (367b) (368) (372) (373) (373) (374)
Space heating from CHP) less credit emissions for electricity Water heated by CHP less credit emissions for electricity Efficiency of heat source 2 (%) Energy associated with heat source Electrical energy for heat distribution Total Energy associated with commitie it is negative set (373) to zero (373) to zero (373) to zero (373) associated with space heatenergy associated with water from	-(307a) × (361) ÷ (362) = (310a) × 100 ÷ (362) = -(310a) × (361) ÷ (362) = If there is CHP use 2 [(307b) nunity systems (unless specified otherwise ing (secondary) immersion heater or instart and water heating	kWh/year 3190.45	1.02 2.92 1.02 2.92 0 (366) for the secon 1.02 72) C)	kV	58.32 Energy Wh/year 3254.25 -2382.99 2470.54 -1809.1 92 2419.38 159.3 4111.38 0 0	(363) (364) (365) (366) (367b) (368) (372) (373) (373) (374) (375)
Space heating from CHP) less credit emissions for electricity Water heated by CHP less credit emissions for electricity Efficiency of heat source 2 (%) Energy associated with heat source Electrical energy for heat distribution Total Energy associated with common if it is negative set (373) to zero (373) to zero (373) to zero (373) associated with space heated Energy associated with water from Total Energy associated with space	-(307a) × (361) ÷ (362) = (310a) × 100 ÷ (362) = -(310a) × (361) ÷ (362) = If there is CHP uses 2 [(307b) nunity systems (unless specified otherwise ing (secondary) immersion heater or instance and water heating ing	kWh/year 3190.45	1.02 2.92 1.02 2.92 0 (366) for the secon 1.02 C) 0 1.02 2.92	kV	58.32 Energy Wh/year 3254.25 -2382.99 2470.54 -1809.1 92 2419.38 159.3 4111.38 0 0 4111.38	(363) (364) (365) (366) (367b) (368) (372) (373) (373) (374) (375) (376)
Space heating from CHP) less credit emissions for electricity Water heated by CHP less credit emissions for electricity Efficiency of heat source 2 (%) Energy associated with heat source Electrical energy for heat distribution Total Energy associated with common if it is negative set (373) to zero in Energy associated with space heat Energy associated with water from Total Energy associated with space Energy associated with space cool	-(307a) × (361) ÷ (362) = (310a) × 100 ÷ (362) = -(310a) × (361) ÷ (362) = If there is CHP uses a company of the company of	kWh/year 3190.45 816.09 2422.1 619.55 x sing two fuels repeat (363) to b)+(310b)] × 100 ÷ (367b) × [(313) × (363)(366) + (368)(376) × (309) × ntaneous heater(312) × (373) + (374) + (375) = (315) ×	1.02 2.92 1.02 2.92 0 (366) for the secon 1.02 C) 0 1.02 2.92	kV	58.32 Energy Wh/year 3254.25 -2382.99 2470.54 -1809.1 92 2419.38 159.3 4111.38 0 0 4111.38 0	(363) (364) (365) (366) (367b) (368) (372) (373) (373) (374) (375) (376) (377)

Energy saving/generation technologies Item 1

Total Primary Energy, kWh/year

sum of (376)...(382) =

2.92 x 0.01 = -455.82 (380)

4726.6 (383)

SAP 2009 Overheating Assessment

Calculated by Stroma FSAP 2009 program, produced and printed on 17 April 2015

Property Details: 07-14-40586 B17 PL1

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: No **Number of storeys:** 1

Front of dwelling faces: South West

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Low

Night ventilation: False

Blinds, curtains, shutters: Light-coloured curtain or roller blind

Ventilation rate during hot weather (ach): 4 (Windows fully open)

Overheating Details:

Summer ventilation heat loss coefficient: 293.15 (P1)

Transmission heat loss coefficient: 64.2

Summer heat loss coefficient: 357.33 (P2)

Overhangs:

Orientation: Ratio: Z_overhangs:

North East (Rear Elev) 0 1 North West (Side Elev) 0 1

Solar shading:

Orientation:	Z blinds:	Solar access:	Overnangs:	Z summer:	
North East (Rear Elev)	0.6	0.9	1	0.54	(P8)
North West (Side Elev)	0.6	0.9	1	0.54	(P8)

Solar gains:

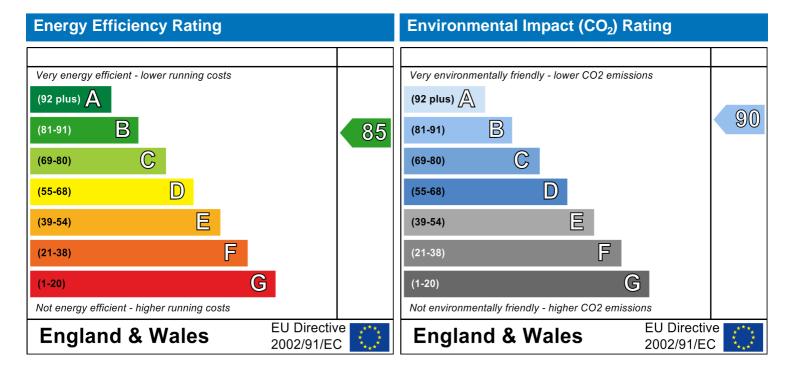
Orientation		Area	Flux	\mathbf{g}_{-}	FF	Shading	Gains
North East (Rear Elev)	0.9 x	20.3	98.96	0.63	0.8	0.54	492.05
North West (Side Elev)	0.9 x	4.55	98.96	0.63	0.8	0.54	110.29
						Total	602.34 (P3/P4)

Internal dains:

	June	July	August	
Internal gains	512.27	493.52	501.93	
Total summer gains	1152.17	1095.86	1002.1	(P5)
Summer gain/loss ratio	3.22	3.07	2.8	(P6)
Mean summer external temperature (Thames valley)	15.4	17.8	17.8	
Thermal mass temperature increment	1.3	1.3	1.3	
Threshold temperature	19.92	22.17	21.9	(P7)
Likelihood of high internal temperature	Not significant	Medium	Slight	

Assessment of likelihood of high internal temperature: Medium

Predicted Energy Assessment


Flat B17

Dwelling type:
Date of assessment:
Produced by:
Total floor area:

Mid floor Flat
16 April 2015
Aymon Winter
86.75 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

Code for Sustainable Homes Report

Assessor and House Details

Assessor Name: Aymon Winter Assessor Number: STRO014511

Property Address: Flat B17

Buiding regulation assessment

kg/m²/year

TER 15.98 DER 11.84

The following code calculations are taken from the Code for Sustainable Homes Technical Guide (Nov 10)

Ene 1 Assessment - Dwelling Emission Rate

Total Energy Type CO2 Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2009 DER Worksheet		11.84	(ZC1)
TER		15.98	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		11.84	
% improvement DER/TER	25.9		

Total Energy Type CO2 Emissions for Codes Levels 6

	kg/m²/year	
DER accounting for SAP Section 16 allowances	11.84	(ZC1)
CO2 emissions from appliances, equation (L14)	15.85	(ZC2)
CO2 emissions from cooking, equation (L16)	2.09	(ZC3)
Net CO2 emissions	29.8	(ZC8)

Result:

Credits awarded for Ene 1 = 3.1

Code Level = 4

Ene 2 - Fabric energy Efficiency

Fabric energy Efficiency: 49.67 Credits awarded for Ene 2 = 0

Ene 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year	
Standard Case CO2 emissions		36.88	
Standard DER		18.94	
Actual Case CO2 emissions		29.78	
Actual DER		11.84	

Reduction in CO2 emissions 19.25

Credits awarded for Ene 7 = 2

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

- · Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.
- · Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified
- · Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.
- All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.